2023 中国开源开发者报告发展的新阶段。LLM Agent 是一种基于 LLM 的智能代 理,它能够自主学习和执行任务,具有一定的“认知能力 和决策能力”。LLM Agent 的出现,标志着 LLM 从传 统的模型训练和应用模式,转向以 Agent 为中心的智能 化模式。LLM Agent 打破了传统 LLM 的被动性,使 LLM 能够主动学习和执行任务,从而提高了 LLM 的应用 范围和价值;它为 LLM 的智能化发展提供了新的方向, 快速迭代发展,诸如 Dify.AI 的 LLMOps、Milvus 的向量 数据库、CodeGeeX 与 Comate 的 AI 编程、对 LLM Prompt 的研究、OneFlow 的深度学习框架。 值得一提的还有华为的盘古大模型,其中盘古气象大模型是 首个精度超过传统数值预报方法的 AI 模型,速度相比传统 数值预报提速 10000 倍以上,能够提供全球气象秒级预 报。盘古大模 西。它需 要你不断完善自己的输入,甚至有时候可能要求在你自身都不 知道“可以想要一个什么东西”的情况下去输入。 这样的话其实就是你在输入与输出:整个事情我都想通了,方 案我其实也就都出来了,机器给到我的都只是一个个独立性 的、小而窄的、解决掉一点一点问题的东西。 举个例子,我说我肚子疼,它会直接告诉我肚子疼可能是因为 什么,怎样做可以缓解或者解决,但它不会一点一点进行“望 闻问切”0 码力 | 87 页 | 31.99 MB | 1 年前3
开源中国 2023 大模型(LLM)技术报告LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其更好0 码力 | 32 页 | 13.09 MB | 1 年前3
2024 中国开源开发者报告TypeScript连续两年成为了 Gitee年度增长最快编程语言 (2023年增长率为49.04%), 同样持续强势的还有Rust以及 C语言家族。 此外,Dart及Arduino首次上榜, 符合2024年跨平台开发及机器 人开发的潮流。 12 / 111 本年度最常用开源许可证 MIT 33.91% Apache-2.0 27.28% MulanPSL-2.0 11.70% GPL-3.0 8.55% Insight 2024 中国开源开发者报告重点聚焦大模型,本章节以大模 型 LLM 开发技术栈作为切入点,将深入探讨以下中国 AI 大模型领域的代表性开源项目社区。 这些开源项目社区覆盖了深度学习框架、向量数据库、AI辅 助编程、LLM 应用开发框架、模型微调、推理优化、LLM Agent,以及检索增强生成(RAG)等多个关键技术栈。 为了更全面客观地展示中国大模型 LLM 开发技术栈的开源 通个人用户。OpenAI 在 ChatGPT 上一个重要且成功的操作就是把大模型从学术界、工业界直接推向了普通个体,让 C 端用户切 实感受到了大模型的可能性与魅力。这一点被国内的大模型厂商广泛学习。在 B 站刷视频,国 内知名的那几个大模型厂商的广告,你一个也不会落下。 受到大家的认可与喜爱固然重要,但对于 C 端用户,有两个需要时刻牢记的问题:一是 C 端用户是没有忠诚度的,谁免费就0 码力 | 111 页 | 11.44 MB | 8 月前3
网易数帆 领先的数字化转型技术与服务提供商 2021据、零售大数据、制造业智慧供应链等行业解决方案。 发布轻舟低代码平台 2.0 。 大数据开源项目 Kyuubi 全票进入 Apache 软件基金会孵化器。 有数 BI 个人版永久免费;发布机器学习平台、消费者运营平台、标签画像、流量分析等产品。 2020 2021 发布轻舟云原生软件生产力平台、有数全链路数据生产力平台。 网易云品牌升级为网易数帆,发力数字化转型基础软件。 深度参与社区 COMPANY 背靠24 年互联网技术积累 成熟可靠 年 24 140 余项技术专利 140 12 亿终端用户体验支持 亿 12 100 余家行业头部客户 + 100 产品与方案均经 网易大规模内部实践验证; 标杆项目均与行业龙头企业共建。 自主可控 产品基于开源内核, 底层实现全面跨云; 基础软件实现国产兼容,推动信创。 原厂服务 原厂服务,核心技术方案不外包; 全过程服务覆盖咨询、 实时数据传输 运维中心 离线开发平台 实时计算平台 集群运维 任务运维 文件管理 任务开发 租户管理 自助分析 权限管理 可视化调度 数据开发及管理平台 标签画像 消费者运营平台 机器学习平台 BI 有数优势 有数全链路数据生产力平台2.0能力全景图 易用 覆盖企业数据全链路的大数 据产品,全面降低数据使用门 槛。 开放 专注大数据技术领域,核心 技术自主可控,支持多云和跨0 码力 | 43 页 | 884.64 KB | 1 年前3
2021 中国开源年度报告…………………………………………………………………………… 34 4.8 一个项目的哪些特征对于您留下成为项目贡献者的重要度评级 ……………………………… 35 4.9 开源项目是否集成 RPA(机器人流程自动化) ………………………………………………… 36 4.10 开源活动 ………………………………………………………………………………………… 37 4.11 聊天运维工具 ……………… 杨丽蕴:我国开源人才后备力量足、基数大。 我国高校越来越重视开源人才的培养 , 越来越多的学生参与到开 源开发中,开源人才培养周期前置,越来越多的学校开设开源课程,希望后续可以实现在学习计算机、编译原 理、软件工程等理论知识的同时,让学生学习掌握开源开发模式、理解认同开源文化。 参与者职位分布 产品经理,9,2% CTO/CEO 公司负责人,26,5% CTO/CEO 公司负责人 产品经理 教师 开发者 39% 和 25%。 专家点评 段夕华: 科技型初创公司用开源来实现技术能力展现,吸引潜在合作伙伴,这个趋势不容忽视。这其中国内 最为抢眼的就是 PingCAP/TiDB,其开源策略、战术均值得大家学习借鉴。 堵俊平:这两年,一个很明显的趋势是越来越多的初创企业参与开源。这一方面得益于 ToB 赛道成为市场和 政策导向的热点,另一方面开源所代表的开放式创新也被投资界所认可。尤其是开源与数据(数据库0 码力 | 132 页 | 14.24 MB | 1 年前3
国家人工智能产业综合标准化体系建设指南(2024版)产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 方面实现快速发展,形成庞大市场规模。伴随以大模型为代 方法,包括人工智能计算设备虚拟化方法,人工智能加速模组接 口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6 (三)关键技术标准 关键技术标准主要包括机器学习、知识图谱、大模型、自然 语言处理、智能语音、计算机视觉、生物特征识别、人机混合增 强智能、智能体、群体智能、跨媒体智能、具身智能等标准。 1. 机器学习标准。规范机器学习的训练数据、数据预处理、 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 知识图谱标准。规范知识图谱的描述、构建、运维、共0 码力 | 13 页 | 701.84 KB | 1 年前3
2023年中国基础软件开源产业研究白皮书含编译器、基础编程语言、IED等 社区协作:鼓励各方在开放平台上协作 贡献,推动开源内容的发展 创新改进:通过资源共享与协作共生, 提升开源内容质量,并产生新的内容 自由共享:开源内容可以免费被任何人 查看、学习、使用 透明与可审查:开源的源代码可以被任 何人审查验证、保持质量 开源精神 通过传递一种对于知 识分享、知识透明和 平等合作的价值观, 凝聚群众力量,促进 开源内容传播应用与 迭代升级,达到社会 com.cn 开源企业洞察(2/2) 开源部门引领下,企业内多组织人员协作配合,推进开源项目正常运营 开源项目需要企业内多组织的共同投入,开源项目的良好运营也需要不同组织间的通力协作。我国较大规模的开源企业发起者,每 年投入开源项目的资金量达到10亿元级别,同时企业从包含技术、产品、运营、战略、职能各部门组织超过千人的团队,投入到开 源项目的治理。近年来,越来越多的企业选择在内部设立开源部门 实现互惠互利、共建共享 获得职业发展机会 提高自我认同 提升自身知识技术水平 占比(%) 56.6% 53.9% 参与开源贡献的原因 开源代码仓、开源社区公开课程、讲座、技术指南已 成为开发者在工作学习外的重要行业知识来源 知识技术 水平提升 实现自我 价值认同 开发者多以兴趣为导向选择开源项目,在帮助项目逐 渐完善的过程中,完成自身的价值认同 获得职业 发展机会 对开源社区的贡献能够很好的反应开发者的技术素0 码力 | 43 页 | 4.69 MB | 1 年前3
2021 中国开源年度报告杨丽蕴:我国开源人才后备力量足、基数大。 我国高校越来越重视开源人才的培养,越来 越多的学生参与到开源开发中,开源人才培养周期前置,越来越多的学校开设开源课程, 希望后续可以实现在学习计算机、编译原理、软件工程等理论知识的同时,让学生学习掌 握开源开发模式、理解认同开源文化。 Yang Liyun: China's open source talent reserve is sufficient; the [Expert Comment] 段夕华: 科技型初创公司用开源来实现技术能力展现,吸引潜在合作伙伴,这个趋势不 容忽视。这其中国内最为抢眼的就是 PingCAP/TiDB,其开源策略、战术均值得大家学习 借鉴。 Duan Xihua: Technology startups use open source to show their technical capabilities and Comment] 堵俊平:在欧美,邮件列表和 Issue 是开源开发者交流的主要方式,这样既可以公开、 透明,又可以把讨论的过程沉淀下来,降低后加入者的学习成本。国内开发者当前习惯在 微信群中讨论问题,但受限于微信群的规模以及非公开的讨论问题的方式,需要聊天机器 人等辅助工具才能达成开源社区的沟通需要。 Du Junping: In Europe and the United States, mailing0 码力 | 199 页 | 9.63 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单推理能力:核心突破,专项升级 推理能力 • 强化学习驱动:DeepSeek R1-Zero 是首个完全基于强化学习(RL) 训练的推理模型,无需任何监督微调(SFT)步骤,打破传统模型依 赖大量标注数据的惯例。DeepSeek-R1 采用强化学习作为核心训练 方法,显著提升了模型的推理能力和语言表达的可读性。 • 推理能力专项提升:在除了利用强化学习模型结合跨领域训练提升模 型综合技能以外, 展 示 推 理 路 径 自 我 修 正 DeepSeek R1 的核心突破在于其通过强化学习驱动的推理能力。该 模型在训练过程中,通过强化学习技术,显著提升模型的推理能力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动 推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的 点,解决强化学习训练初期的不稳定问题,规范模型的输出格 式和推理链条,使其更符合人类可读性。 • 数据来源与特点:这些数据部分来源于清理后的R1-Zero 输出, 还包括人工后处理的长思维链(CoT)数据。其数量相对较少 但质量高,经过精心设计,具有良好的可读性和结构化特点。 • 对模型训练的影响:冷启动数据为模型训练奠定了坚实的基础, 使模型在后续的强化学习阶段能够更稳定地学习和优化。它解0 码力 | 85 页 | 8.31 MB | 8 月前3
普通人学AI指南Intelligence,人工通用智能)是一种理论上的人工智能, 它可以理解、学习和应用知识跨越各种不同领域,功能上等同于人类智能。 与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 得广泛的知识和能力。这些 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 闭源大模型包括 OpenAI 的 GPT 系列和 Google 的 BERT。这些模型因其 高效的学习能力和强大的通用性而受到关注。 开源大模型以 Meta 的 Llama 系列,2024 年 4 月,Llama3 发布,包括 8B 和 70B 模型。 图 2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的缩写,表示万亿。在 AI 大模型 中,”T” 常用来表示模型在训练中处理的 Token 数量。Token 是指模型处理的 基本单元,可以是一个单词、子词,或者字符等。 在大规模预训练语言模型的训练中,通常会提到模型是在多少个 Token 上 进行学习的,以表明模型的训练规模和数据量。例如:LLaMA3 语言模型使用 了超过 15T 个 token 进行训练。 2 AI 工具梳理 大家有没有觉得 AI 工0 码力 | 42 页 | 8.39 MB | 8 月前3
共 165 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17













