2024 中国开源开发者报告https://huggingface.co/spaces/ zh-ai-community/zh-model-rel ease-heatmap 21 / 111 其中,Qwen 系列凭借灵活的多尺寸选项,强大的多语言支持以及友好的模型授权功能, 赢得了社区开发者的高度评价。DeepSeek 通过引入多头潜在注意力(Multi-head Latent Attention, MLA)技术,在 中国开源模型的发展不仅体现在技术突破上,还在生态建设中展现出巨大的活力。中国开源 模型从竞争激烈的“百模大战”逐步迈向多元化和深度细分,国内社区在今年发布了大量高质量 开源模型,尤其是多模态理解与生成模型: 多模态理解:Qwen2-VL、Ovis、InternVL2、DeepSeek JanusFlow、GOT-OCR2_0; 图片生成:PixArt、Lumina、Kolors、Hunyuan-DiT、VAR、Meissonic; 础要素并不为权力机构垄断,大多要从市场上获得。 26 / 111 大模型作为一项令人激动的技术,商业化场景覆盖了对企业(2B)与对个人(2C)两个 大方向。 大模型赛道在海外是“一超多强”,在国内则是“多头并举”,两种典型的竞争格 局都全了。 以上,大模型赛道的元素非常丰富,各种商业化方法的排列组合都不缺,为我们的分析与推 演提供了可贵的素材。对软件商业化问题感兴趣的朋友一定要长期关注这个赛道。只有这样的对0 码力 | 111 页 | 11.44 MB | 8 月前3
Moonshot AI 介绍正“懂”⼤模型的创业者,所以本⽂中有许多反共识的观点:杨植麟觉得微调最终会不存在, tokenizer最后也不⼀定是必须的;硅⾕⼤模型训练者们担⼼数据瓶颈和能源限制,他反⽽觉得所有问 题都是互相关联的,多模态可以缓解数据短缺,合成数据则可以通过改变计算范式解决能源问题。 本⽂还试图回答另⼀个外界普遍关⼼的问题:⼀家新创⽴的AGI公司如何超越OpenAI?杨植麟的答案 是techvision 以很好地还原⼀些具体细节, 还可以内容做推理。⽤⼾⾃⼰还会发现很多场景,⽐如扔给它50个简历,让它根据你的要求做分析和 筛选。 要做差异化,我认为就是去看这⾥⾯的techspace有多⼤,techspace越⼤,技术、产品、商业层⾯ 能实现的差异化就越⼤。如果技术已经收敛了,那⼤家只能去追赶,就是同质化内卷。 然后我其实⽐较乐观,因为现在仍有巨⼤的techspace。AGI技术可以分为三层: 输⼊是有限的,这就是所谓的数据瓶颈问题,下⼀代AI需要拔掉数据线,做到只要源源不断地输⼊电 ⼒,就能源源不断地输出智能。 这两个核⼼问题导致在第三层有巨⼤的空间,包括long-context、不同模态的⽣成、模型多步规划的 能⼒、指令遵循的能⼒、各种agent的功能等。 这些上层的东西都会有巨⼤的差异化,因为中间存在两个重要的技术变量。我认为这是我们的机会。 除了技术层⾯,价值观上我0 码力 | 74 页 | 1.64 MB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 从数字空间 Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17 大模型进入「轻量化」时代,上车上终端,蒸馏小模型 先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力 高质量数据、合成数据使模型知识密度的快速增长 大模型能以更少的参数量达到更高的性能 36 国外:GPT-4等效智能在过去18个月内价格下降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1.当天日期;2.当天的铁路客运量、 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 • 多源数据融合分析:在智能交通和城市 规划中,o3mini有助于将不同来源的数据 (如交通流量、气象数据等)进行融合分析, 预测交通拥堵,为城市规划提供决策支持。 • 交互式数据可视化:在商业智能和数据0 码力 | 85 页 | 8.31 MB | 8 月前3
2023 中国开源开发者报告Bard,作为其首次亮相的对话 LLM 产品,无疑具有其里程碑意义,尽管它的首秀并不尽 如人意,车翻了又翻。 三、 Claude 2、PaLM 2、Llama 等模型与产品也展现了 LLM 在语言理解和多模态处理能力方面的探索,甚至 Claude 2 还一度被誉为实力可以硬刚 ChatGPT。而 Meta 开源的 Llama 2 更成为了 LLM 领域开源势力的典型代表,它的 出现,犹如一颗投入平静湖面的石子,激荡起层层水波, 可以根据开发者的代码提示自动补 全代码,大大提高了开发效率。这也引发了代码原创性的讨 论,但它已经实实在在将 LLM 拉进了编程应用领域。 六、 LangChain 的出现,实现了 LLM 之间的链式交互,使多 个 LLM 模型串联工作,发挥各自的优势,并且可以将 LLM 模型与外部数据源进行连接,产生更强大的语言理解 和生成效果。这开启了 LLM 集成应用的新方向,并诞生了 一个新的细分领域“LLMOps”。 有人称之为“造商业概念”,这里按下不表。 十、 镜头给到国内。相比国际上当前逢 AI 必 GenAI,国内更 多地还是在 LLM 这一层面,Robin Li 的“卷大模型没意 义,卷应用机会更大”,其实很深刻地指出了内中区别。 本报告以开发者视角为主,从 LLM 切入,但实际上或多 或少与 GenAI 脱不开关系。 2023 年国内 LLM 发展活跃,从最初的百度文心一言“硬 刚”Ch0 码力 | 87 页 | 31.99 MB | 1 年前3
国家人工智能产业综合标准化体系建设指南(2024版)理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 方法、性能指标和评价方法等标准。 4. 计算设备标准。规范人工智能加速卡、人工智能加速模 人机混合增强智能标准。规范多通道、多模式和多维度 的交互途径、模式、方法和技术要求,包括脑机接口、在线知识 演化、动态自适应、动态识别、人机协同感知、人机协同决策与 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和 10 智能体基本功能、应用架构等技术要求,包括智能体强化学习、 多任务分解、推理、提示词工程,智能体数据接口和参数范围, 人机协作、智能体自主操作、多智能体分布式一致性等标准。 同 控制、任务规划、路径规划、协同决策、组网通信等标准。 11. 跨媒体智能标准。规范文本、图像、视频、音频等多模 态数据处理基础、转换分析、融合应用等方面的技术要求,包括 数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展 等标准。 12. 具身智能标准。规范多模态主动与交互、自主行为学习、 仿真模拟、知识推理、具身导航、群体具身智能等标准。 (四)智能产品与服务标准 智0 码力 | 13 页 | 701.84 KB | 1 年前3
清华大学 普通人如何抓住DeepSeek红利支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 能力图谱 诗歌创作 语音识别 指令理解 方案规划 实体识别 l 文本创作 文章/故事/诗歌写作 营销文案 、广告语生成 实验二改变初始信念分布,探讨初始条件对结果的 影响。实验三引入10%代理发布的偏误信息,观察 其对信念动态的影响。50个代理人在30天内共生成 194699条对话。 50个智能体的在线社区模拟仿真 场景3:多智能体在线社区模拟 p 为了观测偏误信息加入后50个代理意 见动态的具体呈现,研究通过依存关系 构造三个科学共识的语义图谱,并和无 偏误状态进行对比。对每个科学共识议 题,选择图中最有代表性的40个实体0 码力 | 65 页 | 4.47 MB | 8 月前3
Deepseek R1 本地部署完全手册Ai Club 作者wechat:samirtan 版本:V2.0 更新⽇期:2025年2⽉8⽇ ⼀、简介 Deepseek R1 是⽀持复杂推理、多模态处理、技术⽂档⽣成的⾼性能通⽤⼤语⾔模型。本⼿册 为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 太初T100加速卡 个⼈开发者原型验证 14B 昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI0 码力 | 7 页 | 932.77 KB | 8 月前3
开源中国 2023 大模型(LLM)技术报告理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 2023 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 2023 年到底有多火? 从各种开发者报告、编程语言榜单来看。只要出现有关编程语言流行度的排名, ,而 Java、C/C++ 等 同样在 LLM 开发中发挥关键作用的语言紧随其后。 14 / 32 LLM 基础设施:编程语言 16 / 32 大模型应用现状:知名大模型 在全球范围内,已经发布了多款知名大模型,这些大模 型在各个领域都取得了突破性的进展。 处理文本数据的 GPT-4,能同时处理和理解多种类型数 据的多模态模型 DALL-E 3,以及开源大模型的代表 Lllama 2 都在短时间内获得了大量关注和用户,构成了 大模型领域的「第一梯队」。 讯飞星火 17 / 32 大模型应用现状:首批备案上线的中国大模型0 码力 | 32 页 | 13.09 MB | 1 年前3
DeepSeek从入门到精通(20250204)数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 “从技术、伦理、经济三方面分析 AI的未来” 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供0 码力 | 104 页 | 5.37 MB | 8 月前3
共 175 条
- 1
- 2
- 3
- 4
- 5
- 6
- 18













