积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(132)Linux(45)存储(31)httpd(17)DevOps(16)Zabbix(12)Prometheus(4)网络与安全(2)eBPF(2)Cilium(1)

语言

全部中文(简体)(121)英语(3)zh(2)JavaScript(1)西班牙语(1)法语(1)zh-cn(1)中文(简体)(1)

格式

全部PDF文档 PDF(112)其他文档 其他(18)PPT文档 PPT(2)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 132 个.
  • 全部
  • 系统运维
  • Linux
  • 存储
  • httpd
  • DevOps
  • Zabbix
  • Prometheus
  • 网络与安全
  • eBPF
  • Cilium
  • 全部
  • 中文(简体)
  • 英语
  • zh
  • JavaScript
  • 西班牙语
  • 法语
  • zh-cn
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Curve元数据节点高可用

    © XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 Etcd集群与MDS1(当前leader)出现网络分区 4.2.5.1 事件一先发生 4.2.5.2 事件二先发生 4.2.6 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的 的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被自动删
    0 码力 | 30 页 | 2.42 MB | 6 月前
    3
  • pdf文档 Curve文件系统元数据管理

    of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:in 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk 链式多副本 overwirte有数据不一致风险 chubaofs(cfs) 有元数据服务器 inode
    0 码力 | 24 页 | 204.67 KB | 6 月前
    3
  • pdf文档 Curve支持S3 数据缓存方案

    © XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3 of 9 1.append接口目前采用先从s3 get,在内存中合并完后再put的方式,对s3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3 读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用map s3ChunkInfoMap用于保存对象存储的位置信息。采用2
    0 码力 | 9 页 | 179.72 KB | 6 月前
    3
  • pdf文档 Curve文件系统元数据Proto(接口定义)

    © XXX Page 1 of 15 curve文件系统元数据proto(代码接口定义,已实现)© XXX Page 2 of 15 1、代码结构和代码目录 curve文件系统是相对于curve块设备比较独立的一块,在当前curve项目的目录下,增加一个一级目录curvefs,curvefs下有自己独立的proto\src\test。 2、文件系统proto定义 2.1 mds.proto
    0 码力 | 15 页 | 80.33 KB | 6 月前
    3
  • pdf文档 CurveFS S3数据整理(合并碎片、清理冗余)

    1 of 3 curvefs s3数据整理(合并碎片、清理冗余)© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 背景 只考虑单客户端, 单metaserver 为了解决的问题: 客户端在对一个文件的某个部分多次写入后, 同一个chunk会产生很多版本数据; 而客户端在读的时候, 会需要对这些chunk进行筛选和构建 会需要对这些chunk进行筛选和构建, 得到有效的部分, 越是散乱的状态, 就越需要发送更多次读请求至s3. 最后导致无效旧数据的堆积和读请求性能的下降, 所以需要在合适的时候进行重叠元数据和数据的合并 原则是尽力而为, 并不能做到完美 方案 基于一下3个基础的数据结构, 2层索引 s3chuninfolist[index] = [s3chunkinfo(s)] s3chunkinfo { } s3 object命名: chunkid_version_index (index为obj在chunk内的index) 执行步骤 数据整理作为一个后台服务(线程池), 运行于metaserver, 遍历metaserver的inode进行数据整理的尝试, 入队inodekey, 如果是已有inode任务, enqueue直接返回, 不入队 任务开始执行, 尝试根据inodekey获取inode信息
    0 码力 | 3 页 | 101.58 KB | 6 月前
    3
  • pdf文档 Curve文件系统元数据持久化方案设计

    © XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft 存在的问题? redis 改造 vs 自己实现? redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+- -----------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当 size 为
    0 码力 | 12 页 | 384.47 KB | 6 月前
    3
  • pdf文档 古月《ROS入门21讲》15.服务数据的定义与使用.pdf

    15.服务数据的定义与使用 主 讲 人 : 古 月 服务模型 自定义服务数据 ➢ ➢ message_generation message_runtime ➢ • find_package( …… message_generation) • add_service_files(FILES
    0 码力 | 9 页 | 1.29 MB | 1 年前
    3
  • pdf文档 1.6 利用夜莺扩展能力打造全方位监控系统

    利用夜莺扩展能力打造全方位监控系统 喻波 滴滴 专家工程师 目 录 运维监控需求来源 01 监控痛点:全面完备、跨云 02 夜莺介绍: 国产开源监控系统 03 夜莺设计实现:Agentd 数据采集 04 夜莺设计实现:Server 数据处理 05 夜莺设计实现:技术难点及细节 06 运维监控需求来源 第一部分 如果贵司的业务强依赖IT技术,IT故障会直接影响营业收入, 稳定性体系一定要重视起来,而监控,就是稳定性体系中至 Agentd 数据采集 第四部分 监控系统的核心功能,是数据采集、存储、分析、展示,完 备性看采集能力,是否能够兼容并包,纳入更多生态的能力, 至关重要 夜莺数据采集 01.监控数据采集,all in one的agentd Agentd 进程存 活 端口监 控 插件脚 本 日志监 控 网络设 备 中间件 类 数据库 类 • 支持在web上配置采集策略,不同的采集可以指定 支持在web上配置采集策略,不同的采集可以指定 不同的探针机器、目标机器,便于管理和知识传 承 • 独创在端上流式读取日志,根据正则提取指标的 机制,轻量易用,无业务侵入性 • 内置集成了多种数据库中间件的采集以及网络设 备的采集,复用telegraf和datadog-agent的能力 • 支持statsd的udp协议,用于业务应用的apm监控 分析 夜莺数据采集 01.监控数据采集,all in one的agentd
    0 码力 | 40 页 | 3.85 MB | 1 年前
    3
  • pdf文档 高效智能运维[云+社区技术沙龙第29期] - 蓝鲸研发运维技术PaaS体系实践-张敏

    Group,简称IEG)自用的一套用于 构建企业研发运营一体化体系的PaaS开发框架,提供了aPaaS(DevOps流水线、运行环境托管、前后台框架)和 iPaaS(持续集成、CMDB、作业平台、容器管理、数据平台、AI等原子平台)等模块,帮助企业技术人员快速构建基 础运营PaaS。 腾讯蓝鲸智云秉承开放共赢的理念,以改变中国运维行业为起点,致力于推动国内企业借助研发运营一体化,低成本 实现企业IT经营管理模式升级和自主化。 工具驱动运维:采用运维 开发的模式,实现所有运维任 务自动化、工具化、可视化。 数据驱动运维:基于大数据 的接入、存储、分析技术,对运 维数据进行全面挖掘和分析,实 现数据驱动自动化运维。 机器驱动运维:基于智能算法 的机器自我学习,训练机器智能运 维模型,实现无人值守和智能的运 维与运营。 数据化 2015--2017 智能化 2017—现在 蓝鲸目前在腾讯应用情况及发展方向 终端游戏, 大型游戏平台; 平铺式架构,拓扑关系复杂,模块数量上百,服务器数量 几千…… 腾讯游戏300多款业务中,大多数是由世界各地开发商开发 出来。 所使用的开发语言、开发框架、操作系统、数据库等技术, 是没有直观规律的。 开发商很难为了运维体系而对架构或技术做大规模的修改。 有几乎所有的业务类型 有几乎所有的流行技术 300多款游戏相互之间是没有关系的。 发布变更、故障处理等运维操作场景和操作流程是没有直
    0 码力 | 26 页 | 8.25 MB | 1 年前
    3
  • pdf文档 PromQL 从入门到精通

    户提供监控/可观测性产品 方案,有需求的朋友欢迎联系我的微信 picobyte。 数据类型 Prometheus 有四种数据类型:Gauge、Counter、Histogram、Summary,其中最关键的是 Gauge 和 Counter,Histogram 和 Summary 只是为了上报监控数据的 Client 侧的便利,可 以看做是组合使用了 Gauge 和 Counter。所以我们重点就来讲解 如果实例存活,用 1 表示;再比如内存使用率,这个时刻采集是 33.7%,下个周期采集可能就 变成了 25.8%;还有像机器最近 5 分钟的 load、正在运行的进程数量等等,都使用 Gauge 类 型来表示。这种类型的值,我们非常关注当前值。 Counter 类型 Counter 类型是单调递增的值,比如机器上某块网卡收到的数据包的总量,是从操作系统启动 之后,就持续递增的,对于这种 而对于监控数据采集器而言,一般是周期性运行的,比如每 10 秒采集一次,每次采集网卡收 到/发出的包这个数据的时候,都只能采集到当前的值,就像执行 ifconfig 命令,每 10 秒执行 一次,每次都看到一个巨大的当前值,而且一次比一次大。如果采集器不做计算,把这个值原封 不动上报给监控服务端,那计算增量、计算速率这个需求,就要放到服务端来实现了,所以服务 端必须要能对这种类型的数据建模抽象,也就是所谓的
    0 码力 | 16 页 | 2.77 MB | 1 年前
    3
共 132 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 14
前往
页
相关搜索词
Curve数据节点可用文件系统文件系统管理数据管理支持S3缓存方案Proto接口定义接口定义CurveFS整理合并碎片清理冗余持久设计方案设计古月ROS入门2115服务使用pdf1.6利用夜莺扩展能力打造方位全方位监控高效智能运维社区技术沙龙29蓝鲸研发PaaS体系实践张敏PromQLPrometheus
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩