PolarDB开源生态介绍 - 杭州Meetup 2022.10.15PolarDB开源生态介绍 阿里云 digoal为什么开源是未来?阿里巴巴开源缩略图数据库开源大图PolarDB开源云原生分布式数据库家族 : 兼容MySQL&PostgreSQL用户 生态伙伴 人才 降本提效 团队成长 商业服务 用户合作 • 联合实验室 PolarDB云原生分布式开源数据库产品 高校合作 • 课程合作 • 科研项目合作 • 工作组 高校 协同育人、教学优化成果 峰会 • 大咖说.对话开源 • meetup • 荣誉墙 技能栏目: 3万/场 曝光流量 影响力栏目: up 500万/场 曝光流量 竞技栏目: 100万/场 曝光流量 • SIG • Issue 开源代码协作 • 理事会 • 人才发展委员会 • 技术委员会 开源社区治理 • 联合解决方案|产品 • OxM发型版 • 数据库管理产品 • 数据迁移、联邦产品 生态伙伴合作 高校合作 开源共建 社区运营 生态建设 获得生态 商业服务 使用开源 PolarDB 开源学习 开源共建 人才招聘 产品适配 OxM 源码兜底 技术领先 PolarDB开源生态 共建模式 国产化替代 应用软件 适配迁移 生态伙伴集成 • 云市场、云速搭 • 创新中心SaaS市场 • 云起实验室 接入云端销售 数据价值放大 • 基础设施 • 安全 • 管理维护 • 数据集成 • 开发协同0 码力 | 7 页 | 1.45 MB | 6 月前3
Curve元数据节点高可用© XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 Etcd集群与MDS1(当前leader)出现网络分区 4.2.5.1 事件一先发生 4.2.5.2 事件二先发生 4.2.6 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的 的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被自动删0 码力 | 30 页 | 2.42 MB | 6 月前3
Curve文件系统元数据管理of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:in 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk 链式多副本 overwirte有数据不一致风险 chubaofs(cfs) 有元数据服务器 inode0 码力 | 24 页 | 204.67 KB | 6 月前3
Curve支持S3 数据缓存方案© XXX Page 1 of 9 Curve支持S3 数据缓存方案© XXX Page 2 of 9 版本 时间 修改者 修改内容 1.0 2021/8/18 胡遥 初稿 背景 整体设计 元数据采用2层索引 对象名设计 读写缓存分离 缓存层级 对外接口 后台刷数据线程 本地磁盘缓存 关键数据结构 详细设计 Write流程 Read流程 ReleaseCache流程 基于s3的daemon版本基于基本的性能测试发现性能非常差。具体数据如下: 通过日志初步分析有2点原因© XXX Page 3 of 9 1.append接口目前采用先从s3 get,在内存中合并完后再put的方式,对s3操作过多 2.对于4k 小io每次都要和s3交互,导致性能非常差。 因此需要通过Cache模块解决以上2个问题。 整体设计 整个dataCache的设计思路,在写场景下能将数据尽可能的合并后flush到s3 读场景上,能够预读1个block大小,减少顺序读对于底层s3的访问频次。从这个思路上该缓存方案主要针对的场景是顺序写和顺序 读,而对于随机写和随机读来说也会有一定性能提升,但效果可能不会太好。 元数据采用2层索引 由于chunk大小是固定的(默认64M),所以Inode中采用maps3ChunkInfoMap用于保存对象存储的位置信息。采用2 0 码力 | 9 页 | 179.72 KB | 6 月前3
Curve文件系统元数据Proto(接口定义)© XXX Page 1 of 15 curve文件系统元数据proto(代码接口定义,已实现)© XXX Page 2 of 15 1、代码结构和代码目录 curve文件系统是相对于curve块设备比较独立的一块,在当前curve项目的目录下,增加一个一级目录curvefs,curvefs下有自己独立的proto\src\test。 2、文件系统proto定义 2.1 mds.proto0 码力 | 15 页 | 80.33 KB | 6 月前3
CurveFS S3数据整理(合并碎片、清理冗余)1 of 3 curvefs s3数据整理(合并碎片、清理冗余)© XXX Page 2 of 3 1. 2. 3. 1. 2. 3. 4. 5. 6. 1. 2. 背景 只考虑单客户端, 单metaserver 为了解决的问题: 客户端在对一个文件的某个部分多次写入后, 同一个chunk会产生很多版本数据; 而客户端在读的时候, 会需要对这些chunk进行筛选和构建 会需要对这些chunk进行筛选和构建, 得到有效的部分, 越是散乱的状态, 就越需要发送更多次读请求至s3. 最后导致无效旧数据的堆积和读请求性能的下降, 所以需要在合适的时候进行重叠元数据和数据的合并 原则是尽力而为, 并不能做到完美 方案 基于一下3个基础的数据结构, 2层索引 s3chuninfolist[index] = [s3chunkinfo(s)] s3chunkinfo { } s3 object命名: chunkid_version_index (index为obj在chunk内的index) 执行步骤 数据整理作为一个后台服务(线程池), 运行于metaserver, 遍历metaserver的inode进行数据整理的尝试, 入队inodekey, 如果是已有inode任务, enqueue直接返回, 不入队 任务开始执行, 尝试根据inodekey获取inode信息0 码力 | 3 页 | 101.58 KB | 6 月前3
Curve文件系统元数据持久化方案设计© XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft 存在的问题? redis 改造 vs 自己实现? redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+- -----------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当 size 为0 码力 | 12 页 | 384.47 KB | 6 月前3
古月《ROS入门21讲》15.服务数据的定义与使用.pdf15.服务数据的定义与使用 主 讲 人 : 古 月 服务模型 自定义服务数据 ➢ ➢message_generation message_runtime ➢ • find_package( …… message_generation) • add_service_files(FILES0 码力 | 9 页 | 1.29 MB | 1 年前3
openEuler 23.09 技术白皮书务器、云计算、边缘计算、嵌入式等应用场景,支持多样性计算,致力于提供安全、稳定、易用的操作系统。 欧拉开源社区通过开放的社区形式与全球的开发者共同构建一个开放、多元和架构包容的软件生态体系,孵化支持多 种处理器架构、覆盖数字基础设施全场景,推动企业数字基础设施软硬件、应用生态繁荣发展。 2019 年 12 月 31 日,面向多样性计算的操作系统开源社区 openEuler 正式成立。 2020 年 3 月 30 日, 多处理器架构,逐步扩展 PowerPC 等更多芯片架构支持, 持续完善多样性算力生态体验。 openEuler 社区面向场景化的 SIG 不断组建,推动 openEuler 应用边界从最初的服务器场景,逐步拓展到云计算、边 缘计算、嵌入式等更多场景。openEuler 正成为覆盖数字基础设施全场景的操作系统。 openEuler 希望与广大生态伙伴、用户、开发者一起,通过联合创新、社区共建,不断增强场景化能力,最终实现统 面向未来,社区将持续创新、社区共建、繁荣生态,夯实数字基座。 繁荣社区生态 • 友好桌面环境:UKUI、DDE 、Xfce、Kiran-desktop、GNOME 桌面环境,丰富社区桌面环境生态。 • 欧拉 DevKit:支持操作系统迁移、兼容性评估、简化安全配置 secPaver 等更多开发工具。 系统框架 openEuler 社区与上下游生态建立连接,构建多样性的社区合作伙伴和协作模式,共同推进版本演进。0 码力 | 52 页 | 5.25 MB | 1 年前3
openEuler 22.03-LTS 技术白皮书openEuler 覆盖全场景的创新平台 openEuler 已支持 x86、ARM、SW64、RISC-V 多处理器架构,未来还会扩展 PowerPC 等更多芯片架构支持,持续 完善多样化算力生态体验。 openEuler 社区面向场景化的 SIG 不断组建,推动 openEuler 应用边界从最初的服务器场景,逐步拓展到云计算、边 缘计算、嵌入式等更多场景。openEuler 正成为覆 正成为覆盖全场景的操作系统,新增发布面向边缘计算的版本 openEuler 22.03 LTS Edge、面向嵌入式的版本 openEuler 22.03 LTS Embedded。 openEuler 希望与广大生态伙伴、用户、开发者一起,通过联合创新、社区共建,不断增强场景化能力,最终实现统 一操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 对 Linux Kernel 的持续贡献 openEuler 用提供确定性保障能力,支持 OT 领域应用及 OT 与 ICT 的融合。 欧拉开源社区通过开放的社区形式与全球的开发者共同构建一个开放、多元和架构包容的软件生态体系,孵化支持多种 处理器架构、覆盖数字设施全场景,推动企业数字基础设施软硬件、应用生态繁荣发展。 2019 年 12 月 31 日,面向多样性计算的操作系统开源社区 openEuler 正式成立。 2020 年 3 月 30 日,openEuler0 码力 | 17 页 | 6.52 MB | 1 年前3
共 141 条
- 1
- 2
- 3
- 4
- 5
- 6
- 15













