Greenplum 6: 混合负载的理想数据平台Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary TPC-B基准测试:环境 基于谷歌云平台(Google Cloud Platform,简称GCP),为5个虚拟主机的集群,包含一 个master主机和四个segment主机,master和segment虚拟主机的配置信息如下 master segment 虚拟机类型 n1-standard-16 n1-standard-8 CPU核数 16 8 内存大小(GB) 60 30 CPU平台 Intel Haswell0 码力 | 52 页 | 4.48 MB | 1 年前3
基于 Greenplum 打造SaaS化电商服务平台基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS 发展成为以SaaS ERP为核心,集多种商家服务为一体的SaaS协同平台, 为全国近20万家电商企业提供全面的信息化解决方案。 经过5年多的发展,公司员工从2014年成立之初的9人增加到现在 1200多人。聚水潭已在全国设立了40多个线下服务分支机构,服务范 围覆盖超过268个城市,为客户提供及时、周到和专业的服务。 来自阿里巴巴旗下商家服务市场的最新数据显示,聚水潭已是企业 ERP类目中使用商家0 码力 | 7 页 | 547.94 KB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台Greenplum 5: 新一代数据平台 开源、支持多种云的高级分析数据平台 作者:Keaton Adams、 Dan Baskette、 Cesar Rojas pivotal.io/cn 白皮书 2 © Copyright 2017 Pivotal Software, Inc.保留所有权利。 PIVOTAL GREENPLUM 5:新一代数据平台 目录 关于本白皮书 ..... .......................................................................3 Pivotal Greenplum 5:新一代数据平台 .........................................................................................3 以开源创新替代专有分析环境 ............................................................................... 4 支持多种云不受限于基础架构的数据平台 ..................................................................................................0 码力 | 9 页 | 690.33 KB | 1 年前3
TiDB 与 TiFlash扩展——向真 HTAP 平台前进 韦万0 码力 | 45 页 | 2.75 MB | 6 月前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ...................................................................................... 6 欧拉开源操作系统平台架构 ................................................................................................ ......................................................................... 8 Greenplum:新一代 HTAP 数据平台 ..................................................................................................0 码力 | 17 页 | 2.04 MB | 1 年前3
PieCloudDB Database 云原生平台用户手册社区版V2.1云原生平台用户手册 ©2023 OpenPie All Rights Reserved. 社区版本 ����� 2 �� PieCloudDB ����� PieCloudDB �������������������� �������������������������������������� �����PieCloudDB ������������������0 码力 | 69 页 | 4.35 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书在集群完成计算任务时,可以进行资源回收,节省成本 6 PieCloudDB 云原生虚拟数仓 杭州拓数派科技发展有限公司(又称“OpenPie”)认为计算技术目前经历了三代平台: ①大型机时代;②PC机时 代;和 ③云计算时代。每一代计算平台的变更,都带来了数据计算技术的突破性创新的可能性。随着计算技术从大型 机时代变革为PC机时代,PC机逐渐取代大型机,极大地降低计算门槛,计算资源日渐丰富,数据计算技术突破性创 ”「数据计算,只为新发现」为使命,旗下云原生虚拟数仓 PieCloudDB,运用全新 eMPP(elastic Massive Parallel Processing) 分布式技术,可将物理数仓整合到云原生数据 计算平台,根据数据授权动态创建虚拟数仓,按需灵活计算,打破数据孤岛,支撑更大模型所需的数据和计算。 PieCloudDB 为企业构建「坚如磐石」的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚 器中,同时也提供 PieCloudDB 公有云 SaaS 服务。 数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生管控平台节 点等共四种角色,具体说明如下: 1. 元数据节点: 提供元数据服务,如元数据存储共享、分布式锁、多版本管理、多集群并发、高可用以 及用户权限等功能;0 码力 | 17 页 | 2.02 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 预防亏损 优化供应链 当今的数据仓库方案 基于硬件 专有,昂贵 不可扩展 针对OLTP进行了优化 主流 10 数据库行业所面临的挑战 0 1 2 3 4 5 过去Google™ 曾经用来实现信息搜索功能的技术, 现在被Greenplum用于数据仓库 现在的解决方案 12 Greenplum愿景:企业数据集合 13 • 在企业内创建统一的数据运算平台 • 企业所有者可以直接控制其数据实例 • 通过实体整合提供企业级数据访问功能 • 灵活的扩展和配置降低了投资的平均风险 源文件 源数据 源数据 源文件 数据仓库和分析应 用程序 Greenplum数据架构 全球最强大的分析数据仓库 海量并行查询 • 可以比以往更快地获取 查询结果 • 在数据增长的同时确保 高性能分析 统一的分析处理功能 • 为数据仓库、市场、 ELT、文本挖掘、统计 运算提供统一的平台 • 可以使用SQL、 MapReduce、R等在 所有层次上对任何数 据进行并行分析 19 通过经济的方案扩展 到千万亿字节规模 • 不用担心数据增长或 者开始的规模太小 • 在商用硬件上通过线0 码力 | 45 页 | 2.07 MB | 1 年前3
PieCloudDB Database 产品白皮书 PiecloudDB 邓 画 云原生虚拟数仓 杭州拓数派科技发展有限公司 (又称“Openpie”) 认为计算技术目前经历了三代平台: @大型机时代; @PC机时 代; 和 回云计算时代。每一代计算平台的变更,都带来了数据计算技术的突破性创新的可能性。随着计算技术从大型 机时代变革为PC机时代,PC机逐渐取代大型机,极大地降低计算门极,计算资源日渐丰富,数据计算技术突破性创 支持部署在物理服务器、庶拟机以及容 器中,同时也提供 PieCloudDB 公有云 Saa5 服务。 * ”数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生平台节点等 共四种角色,具体说明如下: 1. 元数据节点; 提供元数据服务,如元数据存储共享、分布式锁、多版本管理、多集群并发、高可用以 及用户权限等功能; 2. 计算节点: 无状态节点 (包括 Coordinator 、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点; 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 多模存储以及多级缓存等功能; 4. 云原生平台节点: PieCloudDB 集群管控节点,提供数据洞察和集群运维等功能,支持可视化的数据 分析、性能监控、集群启停、自动化部署以及权限管控等能力; 用户或者应用可直接调用 PieCloudDB0 码力 | 17 页 | 2.68 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.0JDBC 驱动 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Java API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 简介 . . . . . . . 算法配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.1.5 特殊 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 数据分片 . . . . . 可插拔架构,通过插件开放扩展功能。它提供多源异构数据库增强平台,进而围绕其上层 构建生态。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。它关注如 何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。它站在数据库的上层视角, 关注它们之间的协作多于数据库自身。 ShardingSphere-JDBC0 码力 | 449 页 | 5.85 MB | 1 年前3
共 290 条
- 1
- 2
- 3
- 4
- 5
- 6
- 29













