积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(118)TiDB(24)Greenplum(21)数据库中间件(18)PieCloudDB(14)MySQL(8)Redis(8)ClickHouse(8)SQLite(5)Apache Doris(4)

语言

全部中文(简体)(104)英语(4)中文(简体)(4)

格式

全部PDF文档 PDF(115)DOC文档 DOC(2)PPT文档 PPT(1)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 118 个.
  • 全部
  • 数据库
  • TiDB
  • Greenplum
  • 数据库中间件
  • PieCloudDB
  • MySQL
  • Redis
  • ClickHouse
  • SQLite
  • Apache Doris
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微信 SQLite 数据库 损坏恢复实践

    微信 SQLite 数据库 损坏恢复实践 johnwhe (何俊伟) ◊ 问题背景 ◊ 常规做法 ◊ 数据备份 ◊ Repair Kit ◊ 组合方案 SQLite 恢复 ◊ 微信聊天记录只存客户端 ◊ SQLCipher 加密数据库 问题背景 ◊ SQLite 概率性损坏 ◊ 1/20,000 ~ 1/10,000 ◊ 256MB ~1%,1GB ~1‰ ◊ 设备断电、kernel
    0 码力 | 31 页 | 546.35 KB | 1 年前
    3
  • pdf文档 基于 Greenplum 打造SaaS化电商服务平台

    基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS 发展成为以SaaS ERP为核心,集多种商家服务为一体的SaaS协同平台, 为全国近20万家电商企业提供全面的信息化解决方案。 经过5年多的发展,公司员工从2014年成立之初的9人增加到现在 1200多人。聚水潭已在全国设立了40多个线下服务分支机构,服务范 围覆盖超过268个城市,为客户提供及时、周到和专业的服务。 来自阿里巴巴旗下商家服务市场的最新数据显示,聚水潭已是企业 ERP类目中使用商家
    0 码力 | 7 页 | 547.94 KB | 1 年前
    3
  • pdf文档 [PingCAP Meetup SH 5.26]上海电信微信营业厅 TiDB 实践 v 1.6

    上海电信微信营业厅 TiDB 实践 业务 痛点 选择 测试 上线 特性 业务介绍 ● 运营活动 ● 套餐查询 ● 业务办理 ● 话费充值 ● 账单缴费 当前粉丝:400万+ 月活跃人数:110万+ 7*24小时的服务 业务痛点 DBA 分表 分库 运维 中间件 稳定性 ... 选择 MyCat TIDB Mysql 分片 ... 选型测试 Mysql 主从分表:活动 延迟 Mycat
    0 码力 | 9 页 | 188.20 KB | 6 月前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    接⼊ SuperSet UDW 使⽤案例 使⽤案例 案例⼀ 利⽤ logstash+Kafka+UDW 对⽇志数据分析 案例⼆ 基于UDW实现⽹络流分析 PXF 扩展 扩展 配置 PXF 服务 创建 EXTENSION 读写 HDFS ⽬录 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 4/206 194 196 198 B级数据仓库服务。UDW可以通过SQL让数据分析更简 单、⾼效,为互联⽹、物联⽹、⾦融、电信等⾏业提供丰富的业务分析能⼒。⽀持MADlib扩展,客⼾可以在udw上使⽤MADlib的扩展功能,从⽽让机器学习变得简单,⽀持PostGIS,可以⽅便 的⽀持空间、地理位置应⽤。最新⽀持greeplum6.2.1版本。 云数据仓库产品架构 云数据仓库产品架构 云数据库仓库 UDW 服务的架构图如下所⽰: 28核 168G 3800G(SSD) 选择数据仓库类型:Greenplum 是 EMC 开源的数据仓库产品、Udpg 是基于 PostgreSQL 开发的⼤规模并⾏、完全托管的 PB 级数据仓库服务。 选择节点个数:UDW 是分布式架构、所有节点数据都是双机热备,实际可⽤总容量略⼩于节点个数*节点磁盘⼤⼩/2,请根据实际数据⼤⼩选择合适的节点。 3.设置数据仓库信息 必选项有数据仓库名称
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日

    . . . 52 作业统计 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 作业服务器状态展示 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 作业分片状态展示 API . . . . . . . 72 6.3.3 作业运行状态监控 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 监听作业服务器存活 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.4 运维平台 . . . . . . . 2 金融行业 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 9.2.3 数字化与云服务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 9.2.4 出行 . . . . . . . .
    0 码力 | 98 页 | 1.97 MB | 1 年前
    3
  • pdf文档 PostgreSQL和Greenplum 数据库故障排查

    PostgreSQL和Greenplum 数据库故障排查 赵振平 zzp@taryartar.com 北京太阳塔信息科技有限责任公司 2018年PostgreSQL中国技术大会 自我介绍 微信号:laohouzi999 2018年PostgreSQL中国技术大会 • 赵振平,太阳塔技术总监 • 电子工业出版社签约作家 • 腾讯最具价值专家(TVP) • 计算机畅销书作家 • 贵州省省管专家 出版了技术专著《IT架构实录》 微信号:laohouzi999 2018年PostgreSQL中国技术大会 微信号:laohouzi999 2018年PostgreSQL中国技术大会 PG故障排查 微信号:laohouzi999 2018年PostgreSQL中国技术大会 微信号:laohouzi999 1.安装时候的问题排查 2018年PostgreSQL中国技术大会 微信号:laohouzi999 iptables chkconfig --level 0123456 iptables off 2)临时目录/tmp(安装日志) 3)服务器日志(PostgreSQL server error log) 2018年PostgreSQL中国技术大会 微信号:laohouzi999 服务器日志(PostgreSQL server error log) -bash-4.1$ locate pg_ctl /u
    0 码力 | 84 页 | 12.61 MB | 1 年前
    3
  • pdf文档 《Redis使用手册》(试读版)

    过⼤量的实践应⽤, Redis 简洁⾼效、安全稳定的印象已经深⼊⼈⼼。 ⽆论是国内还是国外, 从财富五百强到⼩ 型初创公司都在使⽤ Redis , 很多云服务提供商还以 Redis 为基础构建了相应的缓存服务、消息队列服务以及内 存存储服务 —— 当你使⽤这些服务时, 你实际上就是在使⽤ Redis 。 除了变得越来越受欢迎之外, Redis 在过去数年的另⼀个变化就是更新速度越来越快, 功能也变得越来越多、越 有了近乎⽆限的扩展能⼒。 综上所述, 我们可以说现在的 Redis 跟五年前⽐起来已经完全不⼀样了, ⽽如何向读者讲述新版 Redis ⽅⽅⾯ ⾯的变化, 则是每⼀本 Redis 书都必须回答的问题。 本书以服务 Redis 初学者和使⽤者为⽬标, 介绍了 Redis ⽇常使⽤中最常⽤到的部分, 并以“命令描述+代码示例”的模式详细列举了各个 Redis 命令的⽤法和⽤例。 我相 信⽆论是刚开始学习 Redis 版本以及本书配套的读者服务 ⽹站。 1.1 Redis 简介 Redis 是⼀个主要由 Salvatore Sanfilippo (antirez)开发的开源的内存数据结构存储器, 它经常被⽤作数据 库、缓存以及消息代理等⽤途。 Redis 因为它丰富的数据结构、极快的速度、⻬全的功能⽽为⼈所知, 它是⽬前内存数据库⽅⾯的事实标准, 在 互联⽹上有⾮常⼴泛的应⽤, 包括微博、Twitter、GitHub、Stack
    0 码力 | 352 页 | 6.57 MB | 1 年前
    3
  • pdf文档 2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰

    一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt h QPM IOUtils Partitions FailedInserts 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 服务监控-扫描详情: 一切以用户价值为依归 12 部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归 13 部署与监控管理 1 立体监控模型: 立体监控模型: 监控分层 监控项 敏感度 紧急度 应用层 业务指标,数据异常 低 高 服务层 错误日志 中 中 请求指标 扫描详情 响应耗时 物理层 磁盘IO, 持续负载,流量 高 低 一切以用户价值为依归 业务应用实践 iData 14 2 一切以用户价值为依归 15 业务应用实践 iData 2 一切以用户价值为依归 l 游戏数据分析的业务背景 l iData 数据分析引擎TGMars
    0 码力 | 26 页 | 3.58 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    在数据应用交互层面,由于时效性的要求,数据最终的展现查询还是需要通过DBMS(MySQL) 、MOLAP(Kylin)引擎来进行支撑。如下图所示: 如果想及时了 解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop 汇总数据的交互 业务团队日常经营分析最典型的场景就是各种维度下的自定义查询,面对如此灵活可变、所见即 很高。例如,大数据量的同步、新增字段、历史数据更新等操作,它们的维护成本都非常高。 外卖运营业务特点 美团的使命是“帮大家吃得更好,生活更好”。外卖业务为大家提供送餐服务,连接商家与用户, 这是一个劳动密集型的业务,外卖业务有上万人的运营团队来服务全国几百万的商家,并以“商圈 ”为单元,服务于“商圈”内的商家。“商圈”是一个组织机构维度中的最小层级,源于外卖组织的特 点,“商圈”及其上层组织机构是一个变化维度,当“商圈”边界发生变化时,就导致在往常日增量的 较高的业务,需要严格控制查询时效(基本在毫秒级),对于并发不高的业务,允许进行 较大的查询,但也要考虑集群的承受能力。 通过一年来的应用以及Doris的不断改进升级,Doris的高可靠、高可用、高可扩展性也得 到进一步验证,服务稳定可靠。 准实时场景下的应用 离线业务分析大多基于T+1的离线数据,但在营销活动场景下,外卖团队往往需要当日的实时数 据进行业务变化的监控与分析,通常情况下会采用实时流计算来实现。 外卖实时业务监控有如下特点:
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
  • pdf文档 Qcon北京2018--《MySQL的Docker容器化大规模实践》--王晓波

    MySQL+DB中间件解决水平拆分问题。 ■ MySQL水平拆分的引入会使数据库实例数量大幅上升,传统运维手段维护成本高,交付能力差。 MySQL数据库为何要Docker化 1.MySQL数据库迅速爆炸式增长后,服务器规模不断增大,快速部署是个问题。 2.随着业务的发展,扩容数据库的不方便不快捷,也是个问题。 3.大量数据量小的数据库系统也单独部署在物理机,浪费问题突出。 4.DBA的数据库自动化标准化运维的需求。 操作系统 宿主机 容器 镜像 Kernel版本 4.7 CentOS 7.2 部署服务器监控、容器监控agent容器 Docker版本 1.12,部署监控及系统服务agent MariaDB镜像(按产品)、MySQL5.7镜像(按产品)、监控容器镜 像、HA管理系统镜像、实例迁移服务镜像、监控服务端镜像 PS:容器虚拟化带来轻量高效,快速部署的同时,docker容器在隔离性方面也存在 通过mydumper备份20G以下的实例或备份指定表。 备份策略: 1.每日自动化备份。 2.DBA临时手工备份。 过载保护 alert Kill SQL 触发条件 DB 记录到DB 微信告警 微信告警 API HTTP POST 目的: • 当系统数据库较高时确保大多数请求能够够正常访问。 触发条件: • 依赖监控告警系统,thread_running > 30(可自定义) kill哪些语句:
    0 码力 | 32 页 | 7.11 MB | 1 年前
    3
共 118 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往
页
相关搜索词
微信SQLSQLite数据据库数据库损坏恢复实践基于Greenplum打造SaaS电商服务平台服务平台PingCAPMeetupSH5.26上海电信营业营业厅TiDB1.6仓库数据仓库UDWUCloud中立计算服务商ApacheShardingSphereElasticJob中文文档20231101PostgreSQL故障排查Redis使用手册使用手册试读腾讯clickhouse2019丁晓坤熊峰Apache Doris美团Qcon北京2018MySQLDocker容器大规规模大规模王晓波
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩