积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(32)TiDB(15)数据库中间件(13)Greenplum(3)SQLite(1)

语言

全部中文(简体)(28)英语(2)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.104 秒,为您找到相关结果约 32 个.
  • 全部
  • 数据库
  • TiDB
  • 数据库中间件
  • Greenplum
  • SQLite
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    Java API 和 SQL 注释 (待实现)两种方式使用。详情请参见强制分片路由。 配置 分片规则 分片规则配置的总入口。包含数据源配置、表配置、绑定表配置以及读写分离配置等。 数据源配置 真实数据源列表。 表配置 逻辑表名称、数据节点与分表规则的配置。 数据节点配置 用于配置逻辑表与真实表的映射关系。可分为均匀分布和自定义分布两种形式。 • 均匀分布 指数据表在每个数据源内呈现均匀分布的态势,例如: 配置分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为: ds${id % ShardingSphere 还计划通过 SQL 中的特殊注释的方式 引用 Hint,使开发者可以采用更加透明的方式使用该功能。 指定了强制分片路由的 SQL 将会无视原有的分片逻辑,直接路由至指定的真实数据节点。 3.1. 数据分片 20 Apache ShardingSphere document, v5.0.0-beta 3.1.5 内核剖析 ShardingSphere 的 3 个产品的数据分片主要流程是完全一致的。核心由
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为: ds${id % ShardingSphere 还可以通过 SQL 中的特殊注释的方式 引用 Hint,使开发者可以采用更加透明的方式使用该功能。 指定了强制分片路由的 SQL 将会无视原有的分片逻辑,直接路由至指定的真实数据节点。 4.3. 数据分片 35 Apache ShardingSphere document, v5.1.1 4.3.5 使用规范 背景 虽然 Apache ShardingSphere 测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 4.9. 影子库压测 57 Apache ShardingSphere
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为: ds${id % ShardingSphere 还可以通过 SQL 中的特殊注释的方式 引用 Hint,使开发者可以采用更加透明的方式使用该功能。 指定了强制分片路由的 SQL 将会无视原有的分片逻辑,直接路由至指定的真实数据节点。 4.3. 数据分片 35 Apache ShardingSphere document, v5.1.2 4.3.5 使用规范 背景 虽然 Apache ShardingSphere 测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 4.9. 影子库压测 58 Apache ShardingSphere
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为: ds${id % ShardingSphere 还计划通过 SQL 中的特殊注释的方式 引用 Hint,使开发者可以采用更加透明的方式使用该功能。 指定了强制分片路由的 SQL 将会无视原有的分片逻辑,直接路由至指定的真实数据节点。 4.2. 数据分片 30 Apache ShardingSphere document, v5.0.0 4.2.5 使用规范 背景 虽然 Apache ShardingSphere 测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 4.8.3 目标 Apache ShardingSphere
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 3.9. 影子库 42 Apache ShardingSphere 名称 ModeConfiguration modeConfig = ... // 构建运行模式 Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource ModeConfiguration modeConfig = createModeConfiguration(); Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为: ds${id % ShardingSphere 还可以通过 SQL 中的特殊注释的方式 引用 Hint,使开发者可以采用更加透明的方式使用该功能。 指定了强制分片路由的 SQL 将会无视原有的分片逻辑,直接路由至指定的真实数据节点。 4.3. 数据分片 35 Apache ShardingSphere document, v5.1.0 4.3.5 使用规范 背景 虽然 Apache ShardingSphere 测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 4.9.3 目标 Apache ShardingSphere
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 8.9.3 目标 Apache ShardingSphere 名称 ModeConfiguration modeConfig = ... // 构建运行模式 Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource ModeConfiguration modeConfig = createModeConfiguration(); Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 8.9.3 目标 Apache ShardingSphere 名称 ModeConfiguration modeConfig = ... // 构建运行模式 Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource ModeConfiguration modeConfig = createModeConfiguration(); Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    测标识的透传。通常会搭建一整套压测平台以适用不同测试计划。在数据库层面需要做好数据隔离,为 了保证生产数据的可靠性与完整性,需要将压测产生的数据路由到压测环境数据库,防止压测数据对生 产数据库中真实数据造成污染。这就要求业务应用在执行 SQL 前,能够根据透传的压测标识,做好数据 分类,将相应的 SQL 路由到与之对应的数据源。 8.9.3 目标 Apache ShardingSphere 名称 ModeConfiguration modeConfig = ... // 构建运行模式 Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource ModeConfiguration modeConfig = createModeConfiguration(); Map dataSourceMap = ... // 构建真实数据源 Collection ruleConfigs = ... // 构建具体规则 Properties props = ... // 构建属性配置 DataSource
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 01 Sharding JDBC概览

    。 执行器优化 合并和优化分片条件,如OR等。 SQL路由 根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。 SQL改写 将SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。 SQL执行 通过多线程执行器异步执行。 结果归并 将多个执行结果集归并以便于通过统一的JDBC接口输出。结果归并包括流式归并、内存归并和
    0 码力 | 6 页 | 781.70 KB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
ApacheShardingSphere中文文档5.0alpha5.15.2v55.45.301ShardingJDBC概览
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩