兼容龙蜥的云原生大模型数据计算系统:πDataCS--πDataCS简介 兼容龙蜥的云原生大模型数据计算系统 拓数派产品市场总监 吴疆 吴疆 深耕云计算和数据库行业十余年 拓数派(Openpie)产品市场总监 毕业于清华大学计算机系,先后在IBM,EMC, Pivotal,VMWare参与多个云平台和数据库项目 01 拓数派简介 πDataCS简介 02 πDataCS与龙晰 03 01. 拓数派简介 海 外 研 发 )是立足于国内,基础数据计算领域的高科技创新机构。 作 为 国 内 云 上 数 据 库 和 数 据 计 算 领 域 的 引 领 者 , 拓 数 派 以 “Data Computing for New Discoveries”「数据计算,只为新发现」为使命,致力于在数字原生时代,运用突破性计算理论、 独创的云原生数据库旗舰产品以及之上的算法和数学模型,建立下一代云原生数据平台的前沿标准, 驱 驱动企业实现从"软件公司"到"数据公司"再到"数学公司"的持续进阶。 拓数派旗下大模型数据计算系统(PieDataComputing System,缩写πDataCS),以云原生技术 重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为AI的基础科技底座的同时,开启AI技术的新范式。 πDataCS旨在助力企业优化0 码力 | 29 页 | 7.46 MB | 1 年前3
大模型时代下向量数据库的设计与应用大模型时代下向量数据库的设计与应用 个人简介 目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 • 拓数派( OpenPie)是立足于国内的基础数据计算领域高科技 创新机构; • 拥有强大的数据库内核研发团队、数据科学团队和数字化转型团 队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 • 私域数据 - LLM训练数据多来源于公开渠道,无法接触到私域数据,对特定领域的生成任务质量不高。 • 长期记忆 - LLM本身却没有长期记忆能力,对长时间交互的上下文0 码力 | 28 页 | 1.69 MB | 1 年前3
陈宗志:大容量redis存储方案--Pika大容量redis存储方案--Pika 陈宗志 360基础架构组技术经理 SACC2017 简介 • 13年入职360 基础架构组 – Bada – Pika – Zeppelin – Mario, Pink, slash, floyd • https://github.com/Qihoo360 SACC2017 概要 • 存在问题 • 分析问题 基础架构团队一起设计开发的 大容量redis的解决方案 • 完全兼容redis 协议, 用户不需要修改任何代码 进行迁移 Introduction SACC2017 • Redis实例数量:6000+个 • 日访问量:5000+亿 • Pika数据数量:1000+个 • 日访问量:1000+亿 • 覆盖率:80%以上业务线 • 单份数据体积:6.8T Pika Pika 力求在完全兼容 Redis 协议、继承 Redis 便 捷运维设计的前提下通过持久化存储的方式解决 Redis 在大容量场景下的问题 Pika 定位 SACC2017 Redis 问题 • 恢复时间长 • 一主多从, 主从切换代价大 • 缓冲区写满问题 • 成本问题 SACC2017 Redis 问题 • 恢复时间长0 码力 | 47 页 | 2.18 MB | 1 年前3
数据迁移数据迁移 数据迁移 存量 存量 MySQL 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 MySQL(5.5/5.6/5.7/8.0) 到 TiDB 的全量数据迁移, 及增量数据同步。 可协助⽤⼾在不停机的情况下轻松将业务从MySQL 切换⾄ TiDB。 ⾃建 ⾃建 TiDB 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB服务。 ⽤⼾在源TiDB开启Pump ⽤⼾在源TiDB开启Pump, Drainer 可进⾏数据增量同步。 UDTS与源端Pump, Drainer⼀起可协助⽤⼾在不停机的情况下轻松将业 务从⾃建TiDB 切换⾄ TiDB 服务。 为 为 TiDB 服务建⽴ 服务建⽴ MySQL 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ MySQL 数据库。 ⽤⼾在TiDB服务上开启 Binlog 可将数据增量同步⾄下游MySQL。 UDTS 与 TiDB 服务建⽴ TiDB 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB 数据库。 ⽤⼾在源TiDB服务上开启 Binlog 可将数据增量同步⾄下游TiDB。 UDTS 与 TiDB Binlog服务⼀起可协助⽤⼾轻松建⽴TiDB从 数据迁移 Copyright © 2012-2021 UCloud 优刻得 1/2 库。 数据迁移 Copyright © 2012-2021 UCloud0 码力 | 2 页 | 42.01 KB | 6 月前3
SQLite 数据转 MysqlSQLite 数据转 Mysql InsMsgServer 3.7.6 当前 InsMsgServer 环境 以下过程在 win7 sp1 x64 系统下完成,如果您的系统不能运行以下相关程序,请将服务器的 db/ 目录下的 IMBase.dat 文件复制到 win7 sp1 x64 系统下完成 利用 InsMsgServer 生成 Mysql 数据库 确保 确保 mysql 数据库中没有 IM 相关库 调整使用 Mysql 作为数据库,并点击启动 确认启动后数据库正确建立 退出 InsMsgServer,确保导入过程中不影响 InsMsgServer 运行 下载 SQLite Data Wizard 地址: http://www.sqlite.org/cvstrac/wiki?p=ConverterTools0 码力 | 17 页 | 1.40 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum开源MPP数据库介绍Greenplum 开源MPP数据仓库介绍 李晓亮Greenplum工程师、内核团队经理 Confidential │ ©2022 VMware, Inc. 2 Agenda Ø Greenplum简介 Ø Greenplum的MPP架构 Ø 分布式优化器: Postgres planner 和 ORCA Ø 分布式事务和执行 Ø Greenplum存储 Confidential │ ©2022 VMware, Inc. 3 Greenplum简介:什么是Greenplum? 基于PostgreSQL、开源、分布式MPP、ACID完备、为OLAP优化的关系型数据仓库。 https://greenplum.org https://github.com/greenplum-db/gpdb Confidential │ ©2022 VMware, Inc. Greenplum项目,从 PostgreSQL 8 分支,做成 MPP架构 Ø 2010年被EMC收购 Ø 2012年成为Pivotal的一部分 Ø 2015年开源,可能是世界上第一个成熟商用的开源 MPP数据仓库 Ø 2019年底跟随Pivotal被VMware收购 Confidential │ ©2022 VMware, Inc. 5 谁在用Greenplum? Ø 500多付费企业客户 Ø 0 码力 | 23 页 | 4.55 MB | 1 年前3
使用JDBC连接数据库使用JDBC连接数据库 北京理工大学计算机学院 金旭亮 Java数据库应用程序全局视图 Java应用程序 JDBC数据库驱动 (*.jar) JDBC规定了一整套访问数据库的标准API,所有数据库都 需要实现它,因此,使用JDBC访问数据库的Java应用程 序,是很容易切换底层数据库的。 JDBC核心类型一览表 核心类型(java.sql) 说明 DriverManager 负责装载/卸载驱动程序 Connection 与数据库建立连接 Statement 在一个给定的连接中执行SQL语句 PreparedStatement 用于执行预编译的SQL命令 CallableStatement 用于调用数据库中存储过程 ResultSet 保存SQL命令的执行结果 上述组件是独立于底层数据库的,也就是说,只要连接上了数据 库,相同的代码,就可以顺利工作…… JDBC访问数据库的基本步骤 加载JDBC驱动程序 加载JDBC驱动程序 创建数据库连接 执行SQL语句 接收并处理SQL的返回结果 关闭创建的各个对象 对于有可视化界面的应用 程序,或者是Server端 应用程序,应该在独立的 线程中完成这些步骤。 出于精简学习负担的目的,我们将以SQLite为例介绍 JDBC的基本使用,在此基础之上,后面选择微软的 SQL Server来介绍JDBC的高级特性…… JDBC连接SQLite数据库 下载SQLite的JDBC驱动-10 码力 | 20 页 | 1.02 MB | 1 年前3
Al原生数据库与RAGAl原生数据库与RAG 张颖峰 英飞流(上海)信息科技有限公司 创始人 目 录 RAG技术实践 01 Infinity系统架构 02 RAG技术实践 第一部分 基于向量数据库的RAG解决方案 文档 文本块 向量 VectorDB Embedding 向量相似度 提问 答案 查询 结果 文本切分 相关文本块 提示词 提示词模版 对话机器人 搜索 推荐 LLM对企业信息架构的改变 对话机器人 搜索 推荐 数据库 APIs 文档 网站 日志 交易记录 向量数据库 LLM 编排 Copilot RAG典型挑战和解决方案 挑战一:向量召回不准确 挑战四:幻觉、胡说八道 挑战五:定制化成本 挑战二:数据组织混乱丧失语义 挑战三:多样化查询需求 数据加工 数据库 文档结构识别 文字加工 多路召回 多路召回 融合排序 RAG引擎工作流程 文档格式转换 LLM Answer 大模型答案 文档格式解析 文档布局解析 句法模版 抽取引擎 开放域 抽取系统 跨模态文档预训练模型 弹性模版 抽取引擎 跨模态文档 抽取系统 文档 表格 抽取 系统 规则 引擎 模型 系统 文档内容抽取 文档格式解析 Prompt Template 提示模板 Recall 多路召回0 码力 | 25 页 | 4.48 MB | 1 年前3
分布式NewSQL数据库TiDB优刻得科技股份有限公司 版权所有 分布式 分布式NewSQL数据库 数据库 TiDB 产品⽂档 2 9 11 12 12 12 12 12 13 14 14 14 14 15 15 16 16 18 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 什么是 什么是TiDB 产品优势 产品优势 ⾼度兼容 MySQL 动态扩展 分布式事务 HTAP 真正⾦融级⾼可⽤ 适⽤场景 适⽤场景 对数据⼀致性及⾼可靠、系统⾼可⽤、可扩展性、容灾要求较⾼的⾦融⾏业属性的场景 灾要求较⾼的⾦融⾏业属性的场景 对存储容量、可扩展性、并发要求较⾼的海量数据及⾼并发的 OLTP 场景 Real-time HTAP 场景 数据汇聚、⼆次加⼯处理的场景 真正⾦融级⾼可⽤ UCloud 云上 云上 TiDB 架构⽰意图 架构⽰意图 TiDB TiDB Serverless ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 2/120 重置⽤⼾密码 删除⾮root⽤⼾ ⽬录 分布式NewSQL数据库 TiDB Copyright © 2012-2021 UCloud 优刻得 3/120 38 39 40 40 41 41 43 43 43 46 49 49 52 53 55 57 57 58 58 59 60 备份恢复 备份恢复 设置备份策略 调整⾃动备份策略 ⼿动备份 删除备份数据 备份恢复 Dashboard/监控访问 监控访问 代理节点0 码力 | 120 页 | 7.42 MB | 6 月前3
共 155 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16













