积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(108)TiDB(20)Greenplum(20)PieCloudDB(20)数据库中间件(16)MySQL(7)ClickHouse(6)Redis(5)SQLite(5)Apache Doris(4)

语言

全部中文(简体)(98)中文(简体)(4)英语(2)

格式

全部PDF文档 PDF(108)
 
本次搜索耗时 0.085 秒,为您找到相关结果约 108 个.
  • 全部
  • 数据库
  • TiDB
  • Greenplum
  • PieCloudDB
  • 数据库中间件
  • MySQL
  • ClickHouse
  • Redis
  • SQLite
  • Apache Doris
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AGI 趋势下的云原生数据计算系统

    AGI趋势下的云原生数据计算系统 演讲人:徐阳 拓数派:大模型数据计算系统先行者 l 拓数派( OpenPie)是立足于国内的基础数据计 算领域高科技创新机构; l 拥有强大的数据库内核研发团队、数据科学家团 队和数字化转型团队; l 国内虚拟数仓和eMPP技术提出者,不断在数据 计算引擎方向进行创新,全面拥抱AI技术趋势。 企业介绍 云原生数据计算系统 围绕数据组织云原生计算系统, 重构数据存储和计算,一份存 重构数据存储和计算,一份存 储,多引擎数据计算,全面升 级大数据系统至大模型时代。 02 中国AGI发展趋势 中国AGI市场融资非常活跃, AGI顶级人才非常欠缺,整 个市场将长期保持快速增 长态势。 01 AIGC全生命周期管理 基于PieCloudML,为企业构 建统一的MaaS框架和AIGC开 发框架,对模型和AI Agent进 行高效管理。 03 案例分享 基于PieDataCS的用户案例实 Agent成为推动AI技术革命的关键力量 云原生数据计算系统 围绕数据组织云原生计算系统,重构数据存储和计算, 一份存储,多引擎数据计算,全面升级大数据系统至大 模型时代。 02 云原生数据计算系统 大模型数据计算系统概览 • Data Sharing 技术原生支持数据要素流转 • 中国唯一全自研的Table Format技术 • 云原生存储架构,元数据、数据和计算全分离 核 心 技 术 突 破
    0 码力 | 26 页 | 2.84 MB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB : Unbreakable 安全特性剖析

    云原生数据库 PieCloudDB : Unbreakable 安全特性剖析 王 淏 舟 P i e C l o u d D B 资 深 技 术 专 家 O p e n P i e | 拓 数 派 打造立足于国内 基础数据计算领域的世界级高科技创新驱 动机构 !"#$%&'()*+,-./01234567489:;1<=>=? @AB3C>75D?EAF?G4H?<7IJAK4F74I8L$MNO:PQR(STQUV: PART 01 的安全特性 三大区域 • 云原生安全 • 传输层加密 • 缓存数据加密 • 存储安全 • 元数据持久化存储 • 用户数据多副本加密储存 • 计算安全 • 集群失效不影响用户数据 • ACID保证 三大区域 • 云原生安全 • 传输层加密 • 缓存数据加密 • 存储安全 • 元数据持久化存储 • 用户数据多副本加密储存 • 计算安全 • 集群失效不影响用户数据 将数据库数据从明文存储转为加密存储 • 避免数据被系统运维人员直接读出 • 不依赖公有云/私有云/系统加密 • 用户合规需求 • 数据安全审计 • 业务安全审计 PART 02 需求和挑战 来自用户的需求(1) • 密钥自主可控 • 主密钥存储于安全区域中 • 密钥不出区 • 加密密钥支持轮换 • 按时间/条件进行密钥轮换 • 无需停机,不中断服务 • 对性能影响小 • 避免额外造成查询延迟
    0 码力 | 34 页 | 599.00 KB | 1 年前
    3
  • pdf文档 云时代下多数据计算引擎的设计与实现

    Confidential 云时代下多数据计算引擎的设计与实现 郭罡 CTO 拓数派(OpenPie) @2024 OpenPie. All rights reserved. OpenPie Confidential 关 于 拓 数 派 • 成立于2021年,以“Data Computing for New Discoveries”「数据计算,只为新发现」 为使命. • 核心团队来 • 产品 πDataCS:多计算引擎,包括自研分布式数据库PieCloudDB,自研分布式向量数据库 等. • PieCloudDB 存储底座是各计算引擎的载体. • 已落地或者正在落地:IoT、金融、新能源、医疗等行业. @2024 OpenPie. All rights reserved. OpenPie Confidential 云时代 数据计算 多数据模态支持 广泛的生态支持 广泛的生态支持 “一份数据,多引擎计算”的述求 让数据流动起来 @2024 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB 简介 一款云原生分布式 分析型数据库 • 元数据、用户数据、计算完全分离. • 用户数据(code name: Janm)支持 S3/HDFS/Posix. • 架构:Share Nothing
    0 码力 | 15 页 | 3.09 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    的⽀持空间、地理位置应⽤。最新⽀持greeplum6.2.1版本。 云数据仓库产品架构 云数据仓库产品架构 云数据库仓库 UDW 服务的架构图如下所⽰: UDW 采⽤⽆共享的 MPP 架构,适⽤于海量数据的存储和计算。UDW 的架构如上图所⽰,主要有 Client、Master Node 和 Compute Node 组成。基本组成部分的功能如下: 产品架构 Greenplum数据仓库 UDW Copyright 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Segment 的执⾏结果并将结果返回给客⼾端 3. Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute Node 由多个 Segment 组成 Segment 负责业务数据的存储、⽤⼾ SQL 的执⾏ ⾼可⽤ ⾼可⽤ 产品架构 Greenplum数据仓库 UDW 2012-2021 UCloud 优刻得 10/206 2.选择计算节点机型、计算节点数量以及付费⽅式。 其中可选的机型配置有: 机型 机型 名称 名称 配置 配置 存储密集型 ds1.large 4核 24G 2000G(SATA) 存储密集型 ds1.6xlarge 24核 144G 12000G(SATA) 计算密集型 dc1.large 2核 12G 300G(SSD) 快速上⼿
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    --πDataCS简介 兼容龙蜥的云原生大模型数据计算系统 拓数派产品市场总监 吴疆 吴疆 深耕云计算和数据库行业十余年 拓数派(Openpie)产品市场总监 毕业于清华大学计算机系,先后在IBM,EMC, Pivotal,VMWare参与多个云平台和数据库项目 01 拓数派简介 πDataCS简介 02 πDataCS与龙晰 03 01. 拓数派简介 海 外 研 发 杭州拓数派科技发展有限公司(又称"OpenPie")是立足于国内,基础数据计算领域的高科技创新机构。 作 为 国 内 云 上 数 据 库 和 数 据 计 算 领 域 的 引 领 者 , 拓 数 派 以 “Data Computing for New Discoveries”「数据计算,只为新发现」为使命,致力于在数字原生时代,运用突破性计算理论、 独创的云原生数据库旗舰产品以及之上的算法和数学模型,建立下一代云原生数据平台的前沿标准 公司"的持续进阶。 拓数派旗下大模型数据计算系统(PieDataComputing System,缩写πDataCS),以云原生技术 重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为AI的基础科技底座的同时,开启AI技术的新范式。 πDataCS旨在助力企业优化计算瓶颈、充分利用和发挥数据规模优势,构建核心技术壁垒,让大模
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    年的由慢到快的发展,累积了大量信息和数 据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场 计算方式的革命。 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : 执行计划中的运算操作 背景简介 多年前,编者翻译了 GP4 .......................................................................................... - 12 - 计算实例:Instance ....................................................................................... ..................................................................................... - 24 - 角色与权限安全的最佳实践 ............................................................................................ -
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    扩展、分布式事务和分布式治理等功能,可适用于如 Java 同构、异构语言、云原生等各种多样化的应用 场景。 Apache ShardingSphere 旨在充分合理地在分布式的场景下利用关系型数据库的计算和存储能力,而并 非实现一个全新的关系型数据库。关系型数据库当今依然占有巨大市场份额,是企业核心系统的基石,未 来也难于撼动,我们更加注重在原有基础上提供增量,而非颠覆。 Apache ShardingSphere order_id in (10, 11); 其中 t_order 在 FROM 的最左侧,ShardingSphere 将会以它作为整个绑定表的主表。所有路由计算将 会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。故绑定表之间的 分区键要完全相同。 广播表 指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不 .20} 配置分片算法 对于只有一个分片键的使用 = 和 IN 进行分片的 SQL,可以使用行表达式代替编码方式配置。 行表达式内部的表达式本质上是一段 Groovy 代码,可以根据分片键进行计算的方式,返回相应的真实数 据源或真实表名称。 例如:分为 10 个库,尾数为 0 的路由到后缀为 0 的数据源,尾数为 1 的路由到后缀为 1 的数据源,以此 类推。用于表示分片算法的行表达式为:
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    . . 3 1.2.1 连接:打造数据库上层标准 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 增强:数据库计算增强引擎 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 可插拔:构建数据库功能生态 . . . . . . . . 37 3.6.4 应用场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 计算节点过载保护 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 存储节点限流 . . . . . . 增强平台,进而围绕其上层 构建生态。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。它关注如 何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。它站在数据库的上层视角, 关注它们之间的协作多于数据库自身。 ShardingSphere-JDBC ShardingSphere‐JDBC 定位为轻量级
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    概览 星评增长时间线 贡献者增长时间线 Apache ShardingSphere 产品定位为 Database Plus,旨在构建多模数据库上层的标准和生态。它关 注如何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。ShardingSphere 站在 数据库的上层视角,关注他们之间的协作多于数据库自身。 连接、增量和可插拔是 Apache ShardingSphere 方言以及数据库存储的灵活适配,快速的连接应用与多模式的异构 数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 用系统,使得架构师更加自由地调整适合与当前业务的最佳系统架构。 1.1. 简介 4 Apache ShardingSphere document, v5.0.0 1.2 解决方案 解决方案/功能 分布式数据库 数据安全 • 数据库网关 * • 全链路压测 * 数据分片 数据加密 异构数据库支持 影子库 读写分离 行级权限(TODO) SQL 方 言 转 换 (TODO) 可观测性 分布式事务 SQL
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
共 108 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 11
前往
页
相关搜索词
AGI趋势原生数据计算系统据库数据库PieCloudDBUnbreakable安全特性剖析时代下多引擎设计实现Greenplum仓库数据仓库UDWUCloud中立服务服务商兼容模型DataCS精粹文集Database管理管理员指南ApacheShardingSphere中文文档5.0alpha5.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩