Greenplum数据仓库UDW - UCloud中立云计算服务商Greenplum数据仓库 数据仓库 UDW 产品⽂档 2 6 7 7 8 10 10 16 38 38 39 39 39 40 43 44 45 46 47 ⽬录 ⽬录 ⽬录 ⽬录 概览 概览 产品架构 产品架构 云数据仓库产品架构 ⾼可⽤ 快速上⼿ 快速上⼿ ⼀、创建数据仓库 ⼆、连接数据仓库 操作指南 操作指南 关闭数据仓库 启动数据仓库 重启数据仓库 重启数据仓库 查看数据仓库详情 扩容数据仓库 更改数据仓库密码 续费 删除数据仓库 查看操作⽇志 查看监控 ⽬录 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 2/206 50 50 71 73 73 73 74 74 74 74 75 76 76 79 81 82 90 92 101 102 128 访问 访问UDW数据仓库 数据仓库 1 客⼾端⼯具访问UDW 2 图形界⾯的⽅式访问UDW 数据导⼊ 数据导⼊ insert加载数据 copy加载数据 外部表并⾏加载数据 从hdfs加载数据 从mysql中导⼊数据 从oracle中导⼊数据 从ufile加载数据 开发指南 开发指南 1、连接数据库 2、数据库管理 3、模式管理 4、表格设计 5、加载数据0 码力 | 206 页 | 5.35 MB | 1 年前3
Greenplum资源管理器2017 年象行中国(杭州 站)第一期 Greenplum资源管理器 姚珂男/Pivotal kyao@pivotal.io 2017 年象行中国(杭州 站)第一期 Agenda • Greenplum数据库 • Resource Queue • Resource Group 2017 年象行中国(杭州 站)第一期 Greenplum数据库 • 基于PostgreSQL • 分布式 corruption => PANIC 2017 年象行中国(杭州 站)第一期 Resource Queue • Cost is tricky – 没有明确的定义 – 不同优化器不一致 – 优化器不能被纳入资源管理器 2017 年象行中国(杭州 站)第一期 Resource Queue • Priority is rough – 不能精确控制CPU – CHECK_FOR_INTERRUPTS – BackoffBackendTick 空闲group配额会被抢占 – 精确控制 2017 年象行中国(杭州 站)第一期 Resource Group • Memory – Not using CGroups – 重构resource queue内存管理 – 严格资源隔离 – statement_mem控制spill – 每个group内做redzone和runaway detection 2017 年象行中国(杭州 站)第一期 Resource0 码力 | 21 页 | 756.29 KB | 1 年前3
Greenplum Database 管理员指南 6.2.1Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 1 - Greenplum Database 管理员指南 版本 V6.2.1 2020 年 09 月 27 日 欢迎关注 Greenplum 官方微信公众号和加入官方社区技术讨论群: Greenplum 做各种补丁 脚本,也看到了 Greenplum 的大幅进步,甚至我们以前的小技巧也不再需要,持续的 进步,带来的是生态的蓬勃发展。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 2 - 序言 术语约定 GP : Greenplum 数据库 Master 陈淼 电邮: miaochen@mail.ustc.edu.cn Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 3 - 目录 Greenplum Database 管理员指南 ...................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
NetBackup™ for SQLite 管理指南: Windows 和LinuxNetBackup™ for SQLite 管 理指南 Windows 和 Linux 版本 10.0 NetBackup™ for SQLite 管理指南 上次更新时间: 2022-05-10 法律声明 Copyright © 2022 Veritas Technologies LLC. © 2022 年 Veritas Technologies LLC 版权所 有。All rights 的信息,请访问我们的网 站: https://www.veritas.com/support 您可以在下列 URL 上管理 Veritas 帐户信息: https://my.veritas.com 如果您对现有支持协议有疑问,请通过以下方式联系您所在地区的支持协议管理部门: CustomerCare@veritas.com 全球(日本除外) CustomerCare_Japan@veritas Tools (SORT) Veritas Services and Operations Readiness Tools (SORT) 是一个网站,提供的信息和工具 有助于自动处理及简化某些耗时的管理任务。根据具体产品,SORT 会帮助您准备安装和升 级、识别您数据中心的风险并提高操作效率。要了解 SORT 为您的产品提供了哪些服务和工 具,请参见数据表: https://sort.veritas0 码力 | 34 页 | 777.04 KB | 1 年前3
NetBackup™ for SQLite 管理指南: Windows 和 Linux - 版本:10.2NetBackup™ for SQLite 管 理指南 Windows 和 Linux 版本 10.2 NetBackup™ for SQLite 管理指南 上次更新时间: 2023-04-28 法律声明 Copyright © 2023 Veritas Technologies LLC. © 2023 年 Veritas Technologies LLC 版权所 有。All rights 的信息,请访问我们的网 站: https://www.veritas.com/support 您可以在下列 URL 上管理 Veritas 帐户信息: https://my.veritas.com 如果您对现有支持协议有疑问,请通过以下方式联系您所在地区的支持协议管理部门: CustomerCare@veritas.com 全球(日本除外) CustomerCare_Japan@veritas Tools (SORT) Veritas Services and Operations Readiness Tools (SORT) 是一个网站,提供的信息和工具 有助于自动处理及简化某些耗时的管理任务。根据具体产品,SORT 会帮助您准备安装和升 级、识别您数据中心的风险并提高操作效率。要了解 SORT 为您的产品提供了哪些服务和工 具,请参见数据表: https://sort.veritas0 码力 | 29 页 | 675.75 KB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析0 码力 | 45 页 | 2.07 MB | 1 年前3
PieCloudDB Database 产品白皮书 > 岛 网 ioor mauaeaa 和 i Gartner: 数据库中国市场指南 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 价值所带来的商业机会 用户在扩 必须同时扩 的云原生虚拟数仓 产品白皮书 传统数据仓库价格高昂的软硬件、开发运维人员的高晶薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整0 码力 | 17 页 | 2.68 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书库整体市场的半数以上。 1 2 全 球 数 据 圈 预 测 IDC: 3 缺 乏 弹 性 然而,随着数据量的不断攀升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 4 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 传统数据仓库的计算和存储是紧密耦合的,计算资源和存储资源按某一比例强绑定,因此用户在扩容时,必须同时扩 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一定的挑战。当企业遇到负载高峰时刻或需要紧急得到某个 报表结果时,传统数据仓库无法及时扩资源,导致大数据系统无法弹性、快速地分析业务数据,错失了充分挖掘数据 价值所带来的商业机会。 本 高 昂 传统数据仓库价格高昂的软硬件、开发运维人员的高昂薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木 桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”0 码力 | 17 页 | 2.02 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.0252 使用方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 元数据持久化仓库 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 分片算法 . . . . . . . . . JDBC 规范的数 据库。 • 业务零侵入 面对数据库替换场景,ShardingSphere 可满足业务无需改造,实现平滑业务迁移。 • 运维低成本 在保留原技术栈不变前提下,对 DBA 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次 采用无中心化架构,与应用程序共享资源,适用于 Java 开发的高性能的轻量级 OLTP 应用;ShardingSphere‐Proxy 提供静态入口以及异构语言的支持,独立于应用程序部署,适用于 OLAP 应用以及对分片数据库进行管理和运维的场景。 Apache ShardingSphere 是多接入端共同组成的生态圈。通过混合使用 ShardingSphere‐JDBC 和 ShardingSphere‐Proxy,并采用0 码力 | 449 页 | 5.85 MB | 1 年前3
Apache ShardingSphere v5.5.0 中文文档2.6 可选插件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 9.2.7 会话管理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 相关操作 . . . . . 408 使用方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 元数据持久化仓库 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 分片算法 . . . . . . . . . ShardingSphere document • 业务零侵入 面对数据库替换场景,ShardingSphere 可满足业务无需改造,实现平滑业务迁移。 • 运维低成本 在保留原技术栈不变前提下,对 DBA 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次0 码力 | 557 页 | 4.61 MB | 1 年前3
共 112 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













