积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1050)Python(332)Java(270)Spring(224)C++(158)Julia(87)PyWebIO(80)Conan(74)Jupyter(62)其它语言(47)

语言

全部英语(896)中文(简体)(129)中文(繁体)(20)韩语(2)英语(1)

格式

全部PDF文档 PDF(770)其他文档 其他(260)TXT文档 TXT(15)PPT文档 PPT(5)
 
本次搜索耗时 0.330 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • Spring
  • C++
  • Julia
  • PyWebIO
  • Conan
  • Jupyter
  • 其它语言
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Code Analysis++

    https://www.meetup.com/St-Petersburg-CPP-User- Group/ ● C++ Russia: https://cppconf.ru/en/Why Code Analysis?Software QualityReadability Maintainability tools fuzzer battery life Repeatable tests Undefined Behavior – Fun with NULL pointers, part 1: https://lwn.net/Articles/342330/Why code analysis – ● Improve software quality ● Lower developer frustration ● Avoid UBLanguageLanguage helps Built-in compiler check ○ Current LLVM implementation gives 5% overhead ○ Annotations to help analysis: gsl::SharedOwner, gsl::Owner, gsl::Pointer void sample1() { int* p = nullptr; {
    0 码力 | 61 页 | 2.70 MB | 6 月前
    3
  • ppt文档 Finding Bugs using Path-Sensitive Static Analysis

    Finding Bugs using Path-Sensitive Static Analysis Gábor Horváth Gabor.Horvath@microsoft.com @XazaxHunWelcome to CppCon 2021! Join #visual_studio channel on CppCon Discord https://aka.ms/cppcon/discord latest announcements Take our survey https://aka.ms/cppconAgenda • Intro to path-sensitive static analysis • Path-sensitive checks in MSVC • A look under the hood • Upcoming features • Lessons learned2012 -> Unknown p -> Null p -> MaybeNull p -> MaybeNull Warning Unknown Null NotNull MaybeNull Analysis state Transition semi-lattice• Some paths are infeasible: • Not taking branch 1, but taking branch
    0 码力 | 35 页 | 14.13 MB | 6 月前
    3
  • pdf文档 Lifetime Safety in C++: Past, Present and Future

    = __range.end(); for(; __begin != __end; __begin++) { char c = *__begin; [...] } Lifetime analysis for everyone - Gábor Horváth & Matthias Gehre - CppCon 2019C++ is getting safer: P2718! string = __range.end(); for(; __begin != __end; __begin++) { char c = *__begin; [...] } Lifetime analysis for everyone - Gábor Horváth & Matthias Gehre - CppCon 2019 optional mayReadInput(); for(char = __range.end(); for(; __begin != __end; __begin++) { char c = *__begin; [...] } Lifetime analysis for everyone - Gábor Horváth & Matthias Gehre - CppCon 2019 optional mayReadInput(); for(char
    0 码力 | 124 页 | 2.03 MB | 6 月前
    3
  • pdf文档 julia 1.10.10

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 32.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 32.6 External Profiling . . :displaysize => (24, 500))) end 32.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that time needed to take a backtrace (~30 microseconds on the author's laptop). 32.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 32.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 32.6 External Profiling . . :displaysize => (24, 500))) end 32.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that time needed to take a backtrace (~30 microseconds on the author's laptop). 32.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 33.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 33.6 External Profiling . . :displaysize => (24, 500))) end 33.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that backtrace (~30 microseconds on the author's laptop).CHAPTER 33. PROFILING 433 33.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 33.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 33.6 External Profiling . . :displaysize => (24, 500))) end 33.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that backtrace (~30 microseconds on the author's laptop).CHAPTER 33. PROFILING 433 33.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 33.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 33.6 External Profiling . . :displaysize => (24, 500))) end 33.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that backtrace (~30 microseconds on the author's laptop).CHAPTER 33. PROFILING 433 33.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.10.0 DEV Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 32.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 32.6 External Profiling . . :displaysize => (24, 500))) end 32.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that time needed to take a backtrace (~30 microseconds on the author's laptop). 32.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 1678 页 | 5.95 MB | 1 年前
    3
  • pdf文档 Julia v1.9.4 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 32.5 Memory allocation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 32.6 External Profiling . . :displaysize => (24, 500))) end 32.4 Configuration @profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-running computation, it's entirely possible that time needed to take a backtrace (~30 microseconds on the author's laptop). 32.5 Memory allocation analysis One of the most common techniques to improve performance is to reduce memory allocation. Julia
    0 码力 | 1644 页 | 5.27 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
CodeAnalysis++FindingBugsusingPathSensitiveStaticLifetimeSafetyinC++PastPresentandFuturejulia1.1010Julia1.11DocumentationReleaseNotesDEVv19.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩