 Golang大规模云原生应用管理实践组件管理 服务治理 … 权限 K8s Istio Envoy Tekton Argo KEDA ES InfluxDB Promethues Knative Ingress Rook Kube eventer … 策略 机制 Jaeger 实例 调度策略 链路 K8s及云原生生态给 开发者提供的是机制 开发者直接使用K8s的失败故事 • 认知成本高:K80 码力 | 23 页 | 7.70 MB | 1 年前3 Golang大规模云原生应用管理实践组件管理 服务治理 … 权限 K8s Istio Envoy Tekton Argo KEDA ES InfluxDB Promethues Knative Ingress Rook Kube eventer … 策略 机制 Jaeger 实例 调度策略 链路 K8s及云原生生态给 开发者提供的是机制 开发者直接使用K8s的失败故事 • 认知成本高:K80 码力 | 23 页 | 7.70 MB | 1 年前3
 Computer Programming with the Nim Programming Language
= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can0 码力 | 865 页 | 7.45 MB | 1 年前3 Computer Programming with the Nim Programming Language
= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can0 码力 | 865 页 | 7.45 MB | 1 年前3
 Computer Programming with the Nim Programming Language
= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can0 码力 | 784 页 | 2.13 MB | 1 年前3 Computer Programming with the Nim Programming Language
= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can0 码力 | 784 页 | 2.13 MB | 1 年前3
 Julia v1.2.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1250 页 | 4.29 MB | 1 年前3 Julia v1.2.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1250 页 | 4.29 MB | 1 年前3
 Julia v1.1.1 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1216 页 | 4.21 MB | 1 年前3 Julia v1.1.1 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1216 页 | 4.21 MB | 1 年前3
 Julia 1.1.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1214 页 | 4.21 MB | 1 年前3 Julia 1.1.0 Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1214 页 | 4.21 MB | 1 年前3
 Julia 1.2.0 DEV Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1252 页 | 4.28 MB | 1 年前3 Julia 1.2.0 DEV Documentationiteration julia> l == S.L && q == S.Q true LinearAlgebra.bunchkaufman – Func�on. bunchkaufman(A, rook::Bool=false; check = true) -> S::BunchKaufman Compute the Bunch-Kaufman 3 factoriza�on of a Symmetric the components S.D, S.U or S.L as appropriate given S.uplo, and S.p. If rook is true, rook pivo�ng is used. If rook is false, rook pivo�ng is not used. When check = true, an error is thrown if the decomposi�on julia> d == S.D && u == S.U && p == S.p true LinearAlgebra.bunchkaufman! – Func�on. bunchkaufman!(A, rook::Bool=false; check = true) -> BunchKaufman bunchkaufman! is the same as bunchkaufman, but saves space0 码力 | 1252 页 | 4.28 MB | 1 年前3
 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 512 页 | 3.54 MB | 1 年前3 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 512 页 | 3.54 MB | 1 年前3
 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 508 页 | 3.50 MB | 1 年前3 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 508 页 | 3.50 MB | 1 年前3
 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 512 页 | 3.53 MB | 1 年前3 Computer Programming with the Nim Programming Language= array[Rows, Fig] Board = array[Cols, Col] var b: Board const a = 0 rook = 5 # whatever makes sense b[a][0] = rook echo b[a][0] # 5 # with user-defined templates we can simplify the index notation int): int8 = b[i][j] template `[]=`(b: var Board; i, j: int; v: int8) = b[i][j] = v b[a, 0] = rook echo b[a, 0] # 5 Now, let’s investigate the case where one or both dimensions of the matrix can grow0 码力 | 512 页 | 3.53 MB | 1 年前3
共 116 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12














