积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1557)Python(444)Java(363)Spring(305)C++(236)Django(90)Julia(87)Conan(74)UML(72)区块链(71)

语言

全部英语(1333)中文(简体)(147)法语(10)日语(10)中文(繁体)(10)德语(9)西班牙语(9)韩语(9)俄语(9)

格式

全部PDF文档 PDF(1140)其他文档 其他(339)TXT文档 TXT(58)PPT文档 PPT(20)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • Spring
  • C++
  • Django
  • Julia
  • Conan
  • UML
  • 区块链
  • 全部
  • 英语
  • 中文(简体)
  • 法语
  • 日语
  • 中文(繁体)
  • 德语
  • 西班牙语
  • 韩语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Performance Matters

    PERFORMANCE MATTERS (joint work with Charlie Curtsinger, Grinnell College) emeryberger.com, @emeryberger Emery Berger College of Information and Computer Sciences UMASS AMHERSTA short time ago : un.bmp Ogle is too slow! OGLE’84 is too slow!Transistors (millions) Clock Speed (MHz) Performance used to be easy 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995 gle loading… No mojitos for me… Back to the present…Transistors (millions) Clock Speed (MHz) Performance not easy anymore 0.001 0.01 0.1 1 10 100 1,000 10,000 1970 1975 1980 1985 1990 1995
    0 码力 | 197 页 | 11.90 MB | 6 月前
    3
  • pdf文档 Performance Engineering: Being Friendly to Your Hardware

    Being Friendly to Your Hardware Performance Engineering A gentle introduction to hardware for software engineers 2Where does C++ run? 3On an abstract C++ machine 4On an abstract C++ machine? In most practical cases at boot time only Same capacity, different composition => different performance profile From JESD 79-4 DDR4 specificationMemory • Memory system is in the uncore • Cores act Multiple instructions resulting in fewer operations • ISA restrictions may have impact to performance Imaginary ARM mov r20, 0x123456789abcdef0Register renaming 52 Branching Fetch Decode Queue
    0 码力 | 111 页 | 2.23 MB | 6 月前
    3
  • pdf文档 Modern C++ for Parallelism in High Performance Computing

    Poster submission: Modern C++ for Parallelism in High Performance Computing Victor Eijkhout CppCon 2024 Introduction This poster reports on ‘D2D’, a benchmark that explores elegance of expression and context of a High Performance Computing ‘mini-application’. The same code has been implemented using a number of different approaches to parallelism. Implementations are discussed with performance results. Relevance multi-dimensional arrays through ‘mdspan’, it is interesting to explore what C++ can offer for lower level performance critical operations. Scientific computing is an interesting test cases since many algorithms are
    0 码力 | 3 页 | 91.16 KB | 6 月前
    3
  • pdf文档 High-Performance Numerical Integration in the Age of C++26

    Introduction Firsts steps Context Theoretical foundations Outline of an implementation Conclusion High-Performance Numerical Integration in the Age of C++26 Vincent Reverdy Laboratoire d’Annecy de Physique des past, other languages do far better in terms of everything: functionality, ease of use, and even performance This talk The goal is NOT to revolutionize everything or show a library that beats everything algorithms Runge-Kutta Methods (RK) yn+1 = yn + h s � i=1 biki ki = f(tn + cih, yn + (ai1k1 + ai2k2 + · · · + ai,i−1ki−1)h) Linear Multistep Methods (LLM) yn+s + as−1 · yn+s−1 + as−2 · yn+s−2 + · ·
    0 码力 | 57 页 | 4.14 MB | 6 月前
    3
  • pdf文档 Powered by AI: A Cambrian Explosion for C++ Software Development Tools

    `University of Massachusetts Amherst Powered by AI:
 A Cambrian Explosion
 for C++ Software Development Tools Emery BergerCretaceous–Paleogene (K-Pg) extinction eventCretaceous–Paleogene (K-Pg) extinction ALLOCATED MEMORY USAGE GPU UTIL %, PEAK MEMORY (MB/s) MEMORY PYTHON NATIVE AI-powered optimizations!AI-powered optimizations... COMING SOON!evolveevolve profiler that suggests optimizationsevolve
    0 码力 | 128 页 | 23.40 MB | 6 月前
    3
  • pdf文档 3.云原生边云协同AI框架实践

    云原生边云协同AI框架实践 普杰 华为云边缘云创新Lab 高级工程师 KubeEdge SIG AI Tech Lead 目 录 Edge AI现状与趋势 01 Sedna:边云协同AI框架 02 Sedna-GM:K8S Operator 03 实践案例 04 Edge AI现状与趋势 第一部分 Why Edge AI? • Cloud中心化的AI计算范式不足以应对端上AI 应用对实时性、准确性和强交互性的需求 devices Edge AI • 随着大模型的发展,AI 计算对算力需求大 幅且快速增长 AI应用到越来越多的边缘场景 分布式协同AI 概念 将人工智能相关的部分任务部署到边缘设备,基于边缘设备、边缘服务 器、云服务器,利用分布式乃至分布式协同方式实现人工智能的技术 数据在边缘产生 边侧逐步具备AI能力 分布式协同AI 核心驱动力 分布式协同AI核心驱动力 • 随着边侧算 随着边侧算力逐步强化,边缘AI持续演变至分布式协同AI 分布式协同AI技术挑战 1. 边缘资源碎片化 2. 边缘数据孤岛 3. 边缘样本少 4. 边缘数据异构 分布式协同AI 技术挑战 边云协同AI框架 第二部分 首个分布式协同AI开源项目Sedna 基于KubeEdge提供的边云协同能力,支持现有AI类应用无缝下沉到边缘 为分布式协同机器学习服务 ✓ 降低构建与部署成本 ✓ 提升模型性能
    0 码力 | 37 页 | 2.36 MB | 1 年前
    3
  • pdf文档 Nim - the first high performance language with full support for hot codereloading at runtime

    Nim - the first high performance Nim - the first high performance language with full support for hot code- language with full support for hot code- reloading at runtime reloading at runtime by Viktor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 Simply Nim Simply Nim statically typed high performance (compiles to native binaries - comparable to C/C++) very clean & elegant - no, beauty is NOT subjective next big thing: - Andrei Alexandrescu Nim is one of the most logical paths forward on-par performance with C/C++ (compiles to them) some of the most easy interop with C/C++ ........ (compiles to them)
    0 码力 | 63 页 | 2.91 MB | 1 年前
    3
  • pdf文档 Writing Python Bindings for C++ Libraries: Easy-to-use Performance

    volume in terabytes ● Program analysis research and functional programming in a past life ● Love performance, software abstractions, and clean APIsWhy Python? ● Writing extensive APIs in Python - low boilerplate We’re at CppCon :) Why Python? Why C++?● Why? ○ Avoid reimplementing complex code for Python ○ Performance ○ Back and forth with user’s python code ○ Interoperability with data structures in Python - things: ○ Deal with actual pointers and C++ data types ● The compiled program keeps most of the performance and dynamism of an interpreted language, and: ○ is now a C++ .so ○ is not an interpreted scriptCython
    0 码力 | 118 页 | 2.18 MB | 6 月前
    3
  • pdf文档 High-Performance Cross-Platform Architecture: C++20 Innovations

    is moved into general-purpose registers for computations • Depending on the platform, may see a performance gain at this stageQuat Functions template inline
    0 码力 | 75 页 | 581.83 KB | 6 月前
    3
  • pdf文档 Symbolic Calculus for High-Performance Computing: From Scratch Using C++23

    Binding Constraints Architecture Substitution Construction Conclusion Symbolic Calculus for High-Performance Computing from Scratch using C++23 Vincent Reverdy Laboratoire d’Annecy de Physique des Particules all know about optimization, performance, parallelism, . . . What this talk is not about Complicated maths (you are smart people, you can do it yourself) High-performance computing (you all know about concepts Symbolic calculus (derivatives, integrals) Full blown custom rule-based rewriting High-performance Since formulas have the entire information on the mathematical AST, it’s possible to generate
    0 码力 | 70 页 | 1.80 MB | 6 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
PerformanceMattersEngineeringBeingFriendlytoYourHardwareModernC++forParallelisminHighComputingNumericalIntegrationtheAgeof26PoweredbyAICambrianExplosionSoftwareDevelopmentTools原生边云协同框架实践NimfirsthighperformancelanguagewithfullsupporthotcodereloadingatruntimeWritingPythonBindingsLibrariesEasyuseCrossPlatformArchitecture20InnovationsSymbolicCalculusFromScratchUsing23
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩