 Hello 算法 1.0.0b2 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 197 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 Java版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 197 页 | 15.72 MB | 1 年前3
 Hello 算法 1.0.0b2 Swift版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10. 查找算法 155 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithmA(n: Int) { print(0) } // 算法 B 时间复杂度:线性阶 func algorithmB(n: 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 199 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 Swift版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10. 查找算法 155 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithmA(n: Int) { print(0) } // 算法 B 时间复杂度:线性阶 func algorithmB(n: 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 199 页 | 15.72 MB | 1 年前3
 Hello 算法 1.0.0b2 C++版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 197 页 | 15.72 MB | 1 年前3 Hello 算法 1.0.0b2 C++版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10. 查找算法 153 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.2. 二分查找 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 时间复杂度:线性阶 void 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 197 页 | 15.72 MB | 1 年前3
 Hello 算法 1.0.0b2 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10. 查找算法 145 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 # 算法 A 时间复杂度:常数阶 def algorithm_A(n: int) -> None: print(0) # 算法 B 时间复杂度:线性阶 def algorithm_B(n: 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 186 页 | 15.69 MB | 1 年前3 Hello 算法 1.0.0b2 Python版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10. 查找算法 145 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 # 算法 A 时间复杂度:常数阶 def algorithm_A(n: int) -> None: print(0) # 算法 B 时间复杂度:线性阶 def algorithm_B(n: 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 186 页 | 15.69 MB | 1 年前3
 Hello 算法 1.0.0b2 Golang版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10. 查找算法 158 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 202 页 | 15.73 MB | 1 年前3 Hello 算法 1.0.0b2 Golang版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10. 查找算法 158 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计0 码力 | 202 页 | 15.73 MB | 1 年前3
 Hello 算法 1.0.0 Golang版复杂度分析 hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 ,给定三个算法 A、B 和 C : // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 382 页 | 17.60 MB | 1 年前3 Hello 算法 1.0.0 Golang版复杂度分析 hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 ,给定三个算法 A、B 和 C : // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 382 页 | 17.60 MB | 1 年前3
 Hello 算法 1.1.0 C++ 版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { cout << 0 << endl; } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 379 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 C++ 版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { cout << 0 << endl; } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 379 页 | 18.47 MB | 1 年前3
 Hello 算法 1.1.0 C#版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 378 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 C#版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 378 页 | 18.47 MB | 1 年前3
 Hello 算法 1.1.0 Java版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 378 页 | 18.47 MB | 1 年前3 Hello 算法 1.1.0 Java版是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 378 页 | 18.47 MB | 1 年前3
 Hello 算法 1.2.0 简体中文 C# 版www.hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 379 页 | 18.48 MB | 10 月前3 Hello 算法 1.2.0 简体中文 C# 版www.hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑70 码力 | 379 页 | 18.48 MB | 10 月前3
共 196 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20














 
 