积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(375)Python(109)Go(54)区块链(48)PyWebIO(48)Rust(32)Java(29)C++(25)架构设计(13)PHP(10)

语言

全部中文(简体)(339)英语(21)中文(繁体)(11)中文(繁体)(1)

格式

全部PDF文档 PDF(292)其他文档 其他(61)PPT文档 PPT(21)DOC文档 DOC(1)
 
本次搜索耗时 0.077 秒,为您找到相关结果约 375 个.
  • 全部
  • 后端开发
  • Python
  • Go
  • 区块链
  • PyWebIO
  • Rust
  • Java
  • C++
  • 架构设计
  • PHP
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 JVM 内存模型

    JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method
    0 码力 | 1 页 | 48.42 KB | 1 年前
    3
  • pdf文档 2.1.1 Golang主动式内存缓存的优化探索之路

    Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难 支持灵活的信息过滤条件 内存不够用怎么办? 03. 冷热可交换、策略可定制、内存可扩展,多种冷数据淘汰组件,自由组合 存储扩展,冷热数据交换 可自定义冷热数据交换策略 还能提供什么帮助? 04. 降低硬件成本,降低依赖,保证稳定性 同样的性能,需要更少的硬件资源,降低成本 01 核心数据在本地,依赖少,更稳定 02 • 千万级内存对象,GC严重耗时,如何解决? • 复杂的查询场景,内存数据如何高效组织? 复杂的查询场景,内存数据如何高效组织? • 主动式内存缓存,如何保证数据实时性? • 数据太多,内存不够用,如何进行存储扩展? 通过本次分享,可以带来哪些收获? 难点攻克 第二部分 使用内存缓存 数据一致性如何保证? 一致性 01. 缓存如何保证更新,如何与数据库同步 同步、更新  被动方式  缓存过期  定期同步  主动方式  监听数据变化 数据加载,更新 02. 全量数据加载,增量数据监听
    0 码力 | 48 页 | 6.06 MB | 1 年前
    3
  • pdf文档 基于静态分析的Rust内存安全缺陷检测研究

    基于静态分析的Rust内存安全缺陷检测研究 报告人:徐辉 报告日期:2022.11.25 复旦大学 大纲 一、问题背景 二、Rust指针缺陷检测方法 三、实验结论 四、论文发表心得 大纲 一、问题背景 二、Rust指针缺陷检测方法 三、实验结论 四、论文发表心得 Rust语言 ❑ 系统级安全编程语言 ▪ 内存安全 ▪ 并发安全 ▪ 效率 2006年 2011年 Mozilla裁员Servo团队 AWS, Huawei, Google, Microsoft, Mozilla… Rust如何保障内存安全? ❑ 内存安全问题产生的主要原因之一是指针别名导致悬空指针 ▪ 手动释放内存或调用析构函数 ▪ 函数返回时发生的自动析构或内存释放 ❑ Rust设计的目标之一是编译时检查指针别名(共享可变引用) ▪ 但一般意义上的指针分析是NP-hard问题 ▪ 智能指针可行,但作为运行时方案,效率低 Unsafe API call Unsafe API access call Rust实际表现如何? ❑ 调研了2020年12月31日前报告的185个内存安全漏洞[TOSEM'21] ▪ Rust在内存安全防护方面效果不错 ▪ 所有的漏洞(除了1个编译器漏洞)都需要unsafe code ▪ 大部分CVEs都是 API soundness的问题(未在可执行程序中发现)
    0 码力 | 28 页 | 1.55 MB | 1 年前
    3
  • pdf文档 Java 应用与开发 - Java 内存模型与分配机制

    大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 Java 应用与开发 Java 内存模型与分配机制 王晓东 wangxiaodong@ouc.edu.cn 中国海洋大学 September 30, 2018 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 学习目标 1. 理解 JVM 内存模型,掌握 JVM 内存构成 2. 理解 程序的运行过程,学会通过调试模式观察内存的 变化 3. 了解 Java 内存管理,认识垃圾回收 4. 建立编程时高效利用内存、避免内存溢出的理念 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 ���� Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 Java 虚拟机(Java Virtual Machine, JVM) ▶ Java 程序运行在 JVM 上,JVM 是程序与操作系统之间的桥梁。 ▶ JVM 实现了 Java 的平台无关性。 ▶ JVM 是内存分配的前提。 类装载子系统 Class文件
    0 码力 | 44 页 | 818.30 KB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    现代 C++ 入门: RAII 内存管 理 by 彭于斌( github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性 比如当我要设置数组大小为 4 时,不能只 nv = 4 还要重新分配数组内存,从而修改数组起始地址 v 常遇到:当需要修改一个成员时,其他也成员需要被修改,否则出错 这种情况出现时,就意味着你需要把成员变量的读写封装为成员函数 不变性:请勿滥用封装 • 仅当出现“修改一个成员时,其他也成员要
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • pdf文档 2022年美团技术年货 合辑

    都基于 CSPNet[5] 搭建,采用了多分 支的方式和残差结构。对于 GPU 等硬件来说,这种结构会一定程度上增加延时,同 时减小内存带宽利用率。下图 2 为计算机体系结构领域中的 Roofline Model[8] 介绍 图,显示了硬件中计算能力和内存带宽之间的关联关系。 4 > 2022年美团技术年货 图 2 Roofline Model 介绍图 于是,我们基于硬件感知神经网络设计的思想,对 于是,我们基于硬件感知神经网络设计的思想,对 Backbone 和 Neck 进行了重新 设计和优化。该思想基于硬件的特性、推理框架 / 编译框架的特点,以硬件和编译友 好的结构作为设计原则,在网络构建时,综合考虑硬件计算能力、内存带宽、编译 优化特性、网络表征能力等,进而获得又快又好的网络结构。对上述重新设计的两 个检测部件,我们在 YOLOv6 中分别称为 EfficientRep Backbone 和 Rep-PAN RepOpt-B1 网络模型,在浮点精度与 RepVGG-B1 基本一致的情况下,量化模型 精度提升超过 20%,极大地改善了重参数化网络的量化掉点问题。此外,RepOpt 模型的训练速度快,内存占用也比较低。 图 3 RepVGG 和 RepOpt 结构示意图 2.1.2 RepOpt 版本的 PTQ 我 们 实 现 了 RepOpt 版 本 的 YOLOv6s 网 络(YOLOv6s_repopt),
    0 码力 | 1356 页 | 45.90 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: r8 到 r15 是 64 位 x86 新增的寄存器,给了汇编程序员更大的空间,降低了编译 器处理寄存器翻车( register spill )的压力。 • 因此 64 位比 32 位机器相比,除了内存突破 4GB 限制外,也有一定性能优势。 8 位, 16 位, 32 位, 64 位版本 al, ax, eax, rax r15b, r15w, r15d, r15 AT&T 汇编语言 GCC SIMD 让访问内存更有规律,节约了指 令解码和指令缓存的压力等原因,出现加速超过 4 倍的情况。 第 1 章:化简 编译器优化:代数化简 编译器优化:常量折叠 编译器优化:举个例子 编译器优化:我毕竟不是万能的 结论:尽量避免代码复杂化,避免使用会造 成 new/delete 的容器。 简单的代码,比什么优化手段都强。 造成 new/delete 的容器:我是说,内存分配在堆上的容器
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • pdf文档 美团点评2018技术年货

    LruCache在美团DSP系统中的应用演进 22 ...................................................................... Netty堆外内存泄露排查盛宴 32 ...................................................................... Oceanus:美团HTTP流量定制化路由的实践 表,其在数据库里的存储为 “1,2,3,4…… ”这样字符串。而这种数据存储在业务请求和条件过滤过程中, 存在着如下两个问题: a. 大数据存储对内存的消耗 a. 大数据存储对内存的消耗 美团、大众点评运营的城市成千上万,如果每条运营的投放数据都包含大量的城市列表信息,对机器内存 势必产生一定消耗。 b. 过滤性能问题 b. 过滤性能问题 城市的过滤逻辑大体是这样:用户所在城市与从数据库获取到的城市列表(“1 过BitSet的get机 APPKIT打造稳定、灵活、高效的运营配置平台 - 美团技术团队 制就可以判断运营投放的城市是否包含了用户所在的城市。通过BitSet机制,我们既解决了大数据存储对 内存的消耗问题,又解决了城市过滤的性能问题。 4.2 服务层 4.2 服务层 服务层向下对底层数据进行操作;向上为接入层获取数据提供接入能力。其提供四个服务能力:运营后 台、开放平台、数据服务、APPKIT-SDK,如下表所列:
    0 码力 | 229 页 | 61.61 MB | 1 年前
    3
  • pdf文档 Nacos架构&原理

    的存储接口定义好之后,其实就是这个 KVStore 的具体实现了。可以直接将 KVStore 的实现对接 Redis,也可以直接对接 DB ,或者直 接根据 Nacos 内核模块的⼀致性协议,在此基础之上,实现⼀个内存或者持久化的分布式强(弱) ⼀致性 KV。通过功能边界将 Nacos 进程进⼀步分离为计算逻辑层和存储逻辑层,计算层和存储层 之间的交互仅通过⼀层薄薄的数据操作胶水代码,这样就在单个 Nacos 容量的 全部,当大量的实例上下线时,Zookeeper 的表现并不稳定,同时在推送机制上的缺陷,会引起客 户端的资源占用上升,从而性能急剧下降。 Eureka 在服务实例规模在 5000 左右的时候,就已经出现服务不可用的问题,甚至在压测的过程中, 如果并发的线程数过高,就会造成 Eureka crash。不过如果服务规模在 1000 上下,几乎目前所有 的注册中心都可以满足。毕竟我们看到 Nacos 性能报告 测试环境 1. 环境 服务端 指标 参数 机器 CPU 8 核,内存 16G 集群规模 10 节点 Nacos 版本 Nacos 2.0.0-ALPHA2/Nacos 1.4.1 Nacos 性能报告 < 124 客户端 指标 参数 机器 CPU 4 核,内存 8G 集群规模 200 节点 Nacos 版本 Nacos 2.0.0-ALPHA2/Nacos
    0 码力 | 326 页 | 12.83 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    初识算法 hello‑algo.com 9 Figure 1‑3. 货币找零过程 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将 数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转 移到计算机上,以更高效的方式解决各种复杂问题。 � 阅读至此,如果你对数据结构、算法、数组和二分查找等概念仍感到一知半解,那么太好了! 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2. 数据结构定义 「数据结构 Data Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 ‧ 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。 数据结构设计是一个充满权衡的过程,这意味着要在某方面取得优势,往往需要在另一方面作出妥协。例如, 链表相较于数组,在数据添加和删除操作上更加便捷,但牺牲了数据访问速度;图相较于链表,提供了更丰 富的逻辑信息,但需要占用更大的内存空间。 1.2.3. 数据结构与算法的关系 「数据结构」与「算法」高度相关且紧密结合,具体表现在: ‧ 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及用于操作数据的方法。
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
共 375 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 38
前往
页
相关搜索词
figjavamemoryarchpptx2.1Golang主动动式主动式内存缓存优化探索基于静态分析Rust安全缺陷检测研究JavaallocationpdfC++高性性能高性能并行编程课件022022美团技术年货合辑04点评2018Nacos架构原理Hello算法1.00b4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩