积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部前端开发(19)JavaScript(7)TypeScript(5)Dart(5)Vue.js(2)

语言

全部中文(简体)(15)中文(繁体)(3)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.094 秒,为您找到相关结果约 19 个.
  • 全部
  • 前端开发
  • JavaScript
  • TypeScript
  • Dart
  • Vue.js
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 IMWebConf 2017 前端开发者大会

    webim接入层实现架构,柔 性服务特性,监控上报等方 面的实践进行分享 springswang(王 跃) 王跃,腾讯高级前端工程师,拥有10+年前端 开发经验。2013年加入腾讯,负责互娱自助营 销系统,道聚城等多个项目前端架构和开发, 最近一年比较关注小程序发展,曾就职于搜狐 和新浪。 本次主要分享下近1年对小程 序底层框架实现原理研究和 小程序实战经验,帮助开发 者更好的理解小程序的实现
    0 码力 | 8 页 | 698.99 KB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Dart 版

    叫自身來解決問題。它主要包含兩個階段。 1. 遞:程式不斷深入地呼叫自身,通常傳入更小或更簡化的參數,直到達到“終止條件”。 2. 迴:觸發“終止條件”後,程式從最深層的遞迴函式開始逐層返回,匯聚每一層的結果。 而從實現的角度看,遞迴程式碼主要包含三個要素。 1. 終止條件:用於決定什麼時候由“遞”轉“迴”。 2. 遞迴呼叫:對應“遞”,函式呼叫自身,通常輸入更小或更簡化的參數。 3. 124 圖 6‑6 開放定址(線性探查)雜湊表的鍵值對分佈 然而,線性探查容易產生“聚集現象”。具體來說,陣列中連續被佔用的位置越長,這些連續位置發生雜湊衝 突的可能性越大,從而進一步促使該位置的聚堆積生長,形成惡性迴圈,最終導致增刪查改操作效率劣化。 值得注意的是,我們不能在開放定址雜湊表中直接刪除元素。這是因為刪除元素會在陣列內產生一個空桶 None ,而當查詢元素時,線性探查到該空桶就 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果輸入 key 恰好滿足這種等差數列的資料分佈,那麼雜湊值就會出現聚堆積,從而加重雜湊衝突。現在, 假設將 modulus 替換為質數 13 ,由於 key 和 modulus 之間不存在公約數,因此輸出的雜湊值的均勻性會明 顯提升。 modulus = 13 key
    0 码力 | 378 页 | 18.77 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 JavaScript 版

    叫自身來解決問題。它主要包含兩個階段。 1. 遞:程式不斷深入地呼叫自身,通常傳入更小或更簡化的參數,直到達到“終止條件”。 2. 迴:觸發“終止條件”後,程式從最深層的遞迴函式開始逐層返回,匯聚每一層的結果。 而從實現的角度看,遞迴程式碼主要包含三個要素。 1. 終止條件:用於決定什麼時候由“遞”轉“迴”。 2. 遞迴呼叫:對應“遞”,函式呼叫自身,通常輸入更小或更簡化的參數。 3. 123 圖 6‑6 開放定址(線性探查)雜湊表的鍵值對分佈 然而,線性探查容易產生“聚集現象”。具體來說,陣列中連續被佔用的位置越長,這些連續位置發生雜湊衝 突的可能性越大,從而進一步促使該位置的聚堆積生長,形成惡性迴圈,最終導致增刪查改操作效率劣化。 值得注意的是,我們不能在開放定址雜湊表中直接刪除元素。這是因為刪除元素會在陣列內產生一個空桶 None ,而當查詢元素時,線性探查到該空桶就 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果輸入 key 恰好滿足這種等差數列的資料分佈,那麼雜湊值就會出現聚堆積,從而加重雜湊衝突。現在, 假設將 modulus 替換為質數 13 ,由於 key 和 modulus 之間不存在公約數,因此輸出的雜湊值的均勻性會明 顯提升。 第 6 章 雜湊表 www
    0 码力 | 379 页 | 18.78 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 TypeScript 版

    叫自身來解決問題。它主要包含兩個階段。 1. 遞:程式不斷深入地呼叫自身,通常傳入更小或更簡化的參數,直到達到“終止條件”。 2. 迴:觸發“終止條件”後,程式從最深層的遞迴函式開始逐層返回,匯聚每一層的結果。 而從實現的角度看,遞迴程式碼主要包含三個要素。 1. 終止條件:用於決定什麼時候由“遞”轉“迴”。 2. 遞迴呼叫:對應“遞”,函式呼叫自身,通常輸入更小或更簡化的參數。 3. 。 圖 6‑6 開放定址(線性探查)雜湊表的鍵值對分佈 然而,線性探查容易產生“聚集現象”。具體來說,陣列中連續被佔用的位置越長,這些連續位置發生雜湊衝 突的可能性越大,從而進一步促使該位置的聚堆積生長,形成惡性迴圈,最終導致增刪查改操作效率劣化。 值得注意的是,我們不能在開放定址雜湊表中直接刪除元素。這是因為刪除元素會在陣列內產生一個空桶 None ,而當查詢元素時,線性探查到該空桶就 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果輸入 key 恰好滿足這種等差數列的資料分佈,那麼雜湊值就會出現聚堆積,從而加重雜湊衝突。現在, 假設將 modulus 替換為質數 13 ,由於 key 和 modulus 之間不存在公約數,因此輸出的雜湊值的均勻性會明 顯提升。 第 6 章 雜湊表 www
    0 码力 | 384 页 | 18.80 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.1.0 Dart版

    124 图 6‑6 开放寻址(线性探测)哈希表的键值对分布 然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲 突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假 设将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,因此输出的哈希值的均匀性会明显 提升。 modulus = 13 key 元素存储在同一个链表中。然而,链表过长会降低查 询效率,可以通过进一步将链表转换为红黑树来提高效率。 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 378 页 | 18.45 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 JavaScript版

    123 图 6‑6 开放寻址(线性探测)哈希表的键值对分布 然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲 突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假 设将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,因此输出的哈希值的均匀性会明显 提升。 第 6 章 哈希表 hello‑algo 询效率,可以通过进一步将链表转换为红黑树来提高效率。 第 6 章 哈希表 hello‑algo.com 133 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 379 页 | 18.46 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 TypeScript版

    。 图 6‑6 开放寻址(线性探测)哈希表的键值对分布 然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲 突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假 设将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,因此输出的哈希值的均匀性会明显 提升。 第 6 章 哈希表 hello‑algo 询效率,可以通过进一步将链表转换为红黑树来提高效率。 第 6 章 哈希表 hello‑algo.com 133 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 383 页 | 18.49 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Dart 版

    124 图 6‑6 开放寻址(线性探测)哈希表的键值对分布 然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲 突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假 设将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,因此输出的哈希值的均匀性会明显 提升。 modulus = 13 key 元素存储在同一个链表中。然而,链表过长会降低查 询效率,可以通过进一步将链表转换为红黑树来提高效率。 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 378 页 | 18.46 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 JavaScript 版

    123 图 6‑6 开放寻址(线性探测)哈希表的键值对分布 然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲 突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假 设将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,因此输出的哈希值的均匀性会明显 提升。 第 6 章 哈希表 www.hello‑algo 询效率,可以通过进一步将链表转换为红黑树来提高效率。 第 6 章 哈希表 www.hello‑algo.com 133 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 379 页 | 18.47 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 JavaScript版

    时,该空位可能导致 程序误判元素不存在。为此,通常需要借助一个标志位来标记已删除元素。 ‧ 容易产生聚集。数组内连续被占用位置越长,这些连续位置发生哈希冲突的可能性越大,进一步促使这 一位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。 以下代码实现了一个简单的开放寻址(线性探测)哈希表。 ‧ 我们使用一个固定的键值对实例 removed 来标记已删除元素。也就是说,当一个桶内的元素为 27, 30, 33, … } hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6, … } 如果输入 key 恰好满足这种等差数列的数据分布,那么哈希值就会出现聚堆,从而加重哈希冲突。现在,假设 将 modulus 替换为质数 13 ,由于 key 和 modulus 之间不存在公约数,输出的哈希值的均匀性会明显提升。 modulus = 13 key = 冲突元素存储在同一个链表中。然而,链表过长会降低查 询效率,可以进一步将链表转换为红黑树来提高效率。 ‧ 开放寻址通过多次探测来处理哈希冲突。线性探测使用固定步长,缺点是不能删除元素,且容易产生聚 集。多次哈希使用多个哈希函数进行探测,相较线性探测更不易产生聚集,但多个哈希函数增加了计算 量。 ‧ 不同编程语言采取了不同的哈希表实现。例如,Java 的 HashMap 使用链式地址,而 Python
    0 码力 | 375 页 | 30.68 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
IMWebon2017开发大会开发者开发者大会Hello算法1.2繁体中文繁体中文DartJavaScriptTypeScript1.1简体简体中文1.00b5
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩