积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(177)Julia(87)数据库(51)PostgreSQL(40)其它语言(35)nim(28)系统运维(12)Zabbix(12)Greenplum(11)Kotlin(7)

语言

全部英语(227)中文(繁体)(10)中文(简体)(7)

格式

全部PDF文档 PDF(225)其他文档 其他(19)
 
本次搜索耗时 0.100 秒,为您找到相关结果约 244 个.
  • 全部
  • 后端开发
  • Julia
  • 数据库
  • PostgreSQL
  • 其它语言
  • nim
  • 系统运维
  • Zabbix
  • Greenplum
  • Kotlin
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Haskell 2010 Language Report

    reservedid → case | class | data | default | deriving | do | else | foreign | if | import | in | infix | infixl | infixr | instance | let | module | newtype | of | then | type | where | _ An identifier prefix negation, all operators are infix, although each infix operator can be used in a section to yield partially applied operators (see Section 3.5). All of the standard infix operators are just predefined letters, and the others by identifiers beginning with capitals; also, variables and constructors have infix forms, the other four do not. Module names are a dot-separated sequence of conids. Namespaces are
    0 码力 | 329 页 | 1.43 MB | 1 年前
    3
  • pdf文档 The Swift Programming Language (Swift 5.7) - Apps Dissected

    after their target (such as c!). Binary operators operate on two targets (such as 2 + 3) and are infix because they appear in between their two targets. Ternary operators operate on three targets. Like : c). The values that operators affect are operands. In the expression 1 + 2, the + symbol is an infix operator and its two operands are the values 1 and 2. Assignment Operator The assignment operator 7 } 8 // Prints "ACCESS DENIED" Logical OR Operator The logical OR operator (a || b) is an infix operator made from two adjacent pipe characters. You use it to create logical expressions in which
    0 码力 | 1040 页 | 10.90 MB | 1 年前
    3
  • pdf文档 The Swift Programming Language

    after their target (such as i++). Binary operators operate on two targets (such as 2 + 3) and are infix because they appear in between their two targets. Ternary operators operate on three targets. Like 7 } 8 // prints "ACCESS DENIED" ​ Logical OR Operator The logical OR operator (a || b) is an infix operator made from two adjacent pipe characters. You use it to create logical expressions in which not just limited to the predefined operators. Swift gives you the freedom to define your own custom infix, prefix, postfix, and assignment operators, with custom precedence and associativity values. These
    0 码力 | 525 页 | 4.68 MB | 1 年前
    3
  • pdf文档 Kotlin 1.2 Language Documentation

    BigInteger ; Arithmetic and bitwise operator functions: Binary operators + , - , * , / , % and infix functions and , or , xor , shl , shr ; Unary operators - , ++ , -- , and a function inv . New functions const external override lateinit tailrec vararg suspend inner enum / annotation companion inline infix operator data Place all annotations before modifiers: @Named("Foo") private val foo: Foo Unless Declare a function as infix only when it works on two objects which play a similar role. Good examples: and , to , zip . Bad example: add . Don't declare a method as infix if it mutates the receiver
    0 码力 | 333 页 | 2.22 MB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0.1

    module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ BUILTIN INTERVAL I #-} -- I : Setω {-# BUILTIN IZERO i0 #-} {-# BUILTIN IONE i1 #-} infix 30 primINeg infixr 20 primIMin primIMax primitive primIMin : I → I → I -- _∧_ primIMax : I → postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) {-# BUILTIN PATH
    0 码力 | 256 页 | 247.15 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0

    module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ BUILTIN INTERVAL I #-} -- I : Setω {-# BUILTIN IZERO i0 #-} {-# BUILTIN IONE i1 #-} infix 30 primINeg infixr 20 primIMin primIMax primitive primIMin : I → I → I -- _∧_ primIMax : I → postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) {-# BUILTIN PATH
    0 码力 | 256 页 | 246.87 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.3

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 379 页 | 354.83 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 348 页 | 414.11 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.2

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 354 页 | 433.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.1

    Agda displays the term (x + y) + z as x + y + z (without parenthesis). This is done because of the infix statement infixl 6 _+_ that was declared in the imported Agda.Builtin.Nat module. This declaration module Agda.Builtin.Equality The identity type can be bound to the built-in EQUALITY as follows infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ translation from Agda.Syntax.Concrete to Agda.Syntax.Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions. The abstract syntax Agda.Syntax.Abstract is the
    0 码力 | 350 页 | 416.80 KB | 1 年前
    3
共 244 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 25
前往
页
相关搜索词
Haskell2010TheSwiftProgrammingLanguage5.7AppsDissectedKotlin1.2DocumentationAgdaUserManualv26.06.36.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩